Publications by authors named "Marianna Venturetti"

The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e.

View Article and Find Full Text PDF

During asymmetric cell division, spindle positioning is critical to ensure the unequal segregation of polarity factors and generate daughter cells with different sizes or fates. In budding yeast the boundary between mother and daughter cell resides at the bud neck, where cytokinesis takes place at the end of the cell cycle. Since budding and bud neck formation occur much earlier than bipolar spindle formation, spindle positioning is a finely regulated process.

View Article and Find Full Text PDF

Mitotic exit and cytokinesis must be tightly coupled to nuclear division both in time and space in order to preserve genome stability and to ensure that daughter cells inherit the right set of chromosomes after cell division. This is achieved in budding yeast through control over a signal transduction cascade, the mitotic exit network (MEN), which is required for mitotic CDK inactivation in telophase and for cytokinesis. Current models of MEN activation emphasize on the bud as the place where most control is exerted.

View Article and Find Full Text PDF

Budding yeast spindle position checkpoint is engaged by misoriented spindles and prevents mitotic exit by inhibiting the G protein Tem1 through the GTPase-activating protein (GAP) Bub2/Bfa1. Bub2 and Bfa1 are found on both duplicated spindle pole bodies until anaphase onset, when they disappear from the mother-bound spindle pole under unperturbed conditions. In contrast, when spindles are misoriented they remain symmetrically localized at both SPBs.

View Article and Find Full Text PDF