Publications by authors named "Marianna Penzo"

High-grade osteosarcoma (OS) is the most common primary bone tumor mainly affecting children and young adults. First-line treatment consists of neo-adjuvant chemotherapy with doxorubicin, cisplatin, and methotrexate and surgery. The mean long-term survival rate for localized disease at diagnosis is 65-70%, dropping down to 20% when metastases are present at diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • Cockayne syndrome (CS) is a genetic disorder causing developmental delays, multiple organ issues, and symptoms resembling premature aging.
  • The study found that CS shares significant gene expression characteristics with neurodegenerative diseases, particularly Huntington's disease (HD), highlighting disruptions in ribosomal biogenesis and protein stability in CS patient cells.
  • Research using cell models demonstrated that the mutant form of the Huntingtin protein in HD leads to similar problems in ribosomal function and overall protein homeostasis, suggesting a common pathway in neurodegeneration between CS and HD.
View Article and Find Full Text PDF
Article Synopsis
  • Myxofibrosarcoma is a rare and aggressive soft tissue cancer that often recurs and becomes more severe with each recurrence, posing challenges for patients and clinicians alike.
  • The study introduces a new cell line (MF-R 3) derived from a myxofibrosarcoma patient, which was thoroughly characterized using various biological tests to evaluate its tumor properties.
  • The MF-R 3 cell line exhibits similar characteristics to the original tumor and has shown promising sensitivity to anthracycline drugs, making it a valuable model for further research and drug testing.
View Article and Find Full Text PDF

Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency and skeletal abnormalities. SDS bone marrow haematopoietic progenitors show increased apoptosis and impairment in granulocytic differentiation. Loss of Shwachman-Bodian-Diamond syndrome (SBDS) expression results in reduced eukaryotic 80S ribosome maturation.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is a subtype of ALL involving the malignant expansion of T-cell progenitors. It is driven by a number of different possible genetic lesions, including mutations in genes encoding for ribosomal proteins (RPs). These are structural constituents of ribosomes, ubiquitous effectors of protein synthesis.

View Article and Find Full Text PDF

NOC1 is a nucleolar protein necessary in yeast for both transport and maturation of ribosomal subunits. Here, we show that Drosophila NOC1 (annotated CG7839) is necessary for rRNAs maturation and for a correct animal development. Its ubiquitous downregulation results in a dramatic decrease in polysome level and of protein synthesis.

View Article and Find Full Text PDF

Mammalian cells are commonly used to produce recombinant protein therapeutics, but suffer from a high cost per mg of protein produced. There is therefore great interest in improving protein yields to reduce production cost. We present an entirely novel approach to reach this goal through direct engineering of the cellular translation machinery by introducing the R98S point mutation in the catalytically essential ribosomal protein L10 (RPL10-R98S).

View Article and Find Full Text PDF

Dyskerin is a nucleolar protein involved in the small nucleolar RNA (snoRNA)-guided pseudouridylation of specific uridines on ribosomal RNA (rRNA), and in the stabilization of the telomerase RNA component (hTR). Loss of function mutations in DKC1 causes X-linked dyskeratosis congenita, which is characterized by a failure of proliferating tissues and increased susceptibility to cancer. However, several tumors show dyskerin overexpression.

View Article and Find Full Text PDF

Eukaryotic cytoplasmic ribosomes are highly structured macromolecular complexes made up of four different ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs), which play a central role in the decoding of genetic code for the synthesis of new proteins. Over the past 25 years, studies on yeast and human models have made it possible to identify (ribosomal protein L10 gene), which is a constituent of the large subunit of the ribosome, as an important player in the final stages of ribosome biogenesis and in ribosome function. Here, we reviewed the literature to give an overview of the role of RPL10 in physiologic and pathologic processes, including inherited disease and cancer.

View Article and Find Full Text PDF

Ribosome biogenesis is a fine-tuned cellular process and its deregulation is linked to cancer progression: tumors characterized by an intense ribosome biogenesis often display a more aggressive behavior. Ribosomal RNA (rRNA) synthesis is controlled at several levels, the higher one being the epigenetic regulation of the condensation of chromatin portions containing rRNA genes. KDM2A and KDM2B (Lysine (K)-specific demethylase 2A / B) are histone demethylases modulating the accessibility of ribosomal genes, thereby regulating their transcription.

View Article and Find Full Text PDF

Small nucleolar RNAs (snoRNAs) are non-coding RNAs involved in RNA modification and processing. Approximately half of the so far identified snoRNA genes map within the intronic regions of host genes, and their expression, as well as the expression of their host genes, is dependent on transcript splicing and maturation. Growing evidence indicates that mutations and/or deregulations that affect snoRNAs, as well as host genes, play a significant role in oncogenesis.

View Article and Find Full Text PDF

Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6).

View Article and Find Full Text PDF

Multifaceted relations link ribosome biogenesis to cancer. Ribosome biogenesis takes place in the nucleolus. Clarifying the mechanisms involved in this nucleolar function and its relationship with cell proliferation: 1) allowed the understanding of the reasons for the nucleolar changes in cancer cells and their exploitation in tumor pathology, 2) defined the importance of the inhibition of ribosome biogenesis in cancer chemotherapy and 3) focused the attention on alterations of ribosome biogenesis in the pathogenesis of cancer.

View Article and Find Full Text PDF

Ribosomal RNA (rRNA) is extensively edited through base methylation and acetylation, 2'-O-ribose methylation and uridine isomerization. In human rRNA, 95 uridines are predicted to by modified to pseudouridine by ribonucleoprotein complexes sharing four core proteins and differing for a RNA sequence guiding the complex to specific residues to be modified. Most pseudouridylation sites are placed within functionally important ribosomal domains and can influence ribosomal functional features.

View Article and Find Full Text PDF

Pseudouridine is the most abundant modification found in RNA. Today, thanks to next-generation sequencing techniques used in the detection of RNA modifications, pseudouridylation sites have been described in most eukaryotic RNA classes. In the present review, we will first consider the available information on the functional roles of pseudouridine(s) in different RNA species.

View Article and Find Full Text PDF

The alterations of ribosome biogenesis and protein synthesis play a direct role in the development of tumors. The accessibility and transcription of ribosomal genes is controlled at several levels, with their epigenetic regulation being one of the most important. Here we explored the JmjC domain-containing histone demethylase 1B (JHDM1B) function in the epigenetic control of rDNA transcription.

View Article and Find Full Text PDF

In human ribosomal RNAs, over 200 residues are modified by specific, RNA-driven enzymatic complexes or stand-alone, RNA-independent enzymes. In most cases, modification sites are placed in specific positions within important functional areas of the ribosome. Some evidence indicates that the altered control in ribosomal RNA modifications may affect ribosomal function during mRNA translation.

View Article and Find Full Text PDF

We describe a cell-free translation system for evaluating the activity of ribosomes stringently purified from human cells. This system is based on in vitro reconstitution of the cellular translation machinery, in which a ribosome-free rabbit reticulocyte lysate (RRL) is reassembled with human ribosomes and in vitro-transcribed reporter mRNAs. The protocol describes the preparation of the RRL-derived fractions, purification of ribosomes devoid of detectable nonribosomal-associated factors, and assembly of the reactions to evaluate ribosomal translational efficiency and fidelity using appropriate reporter transcripts.

View Article and Find Full Text PDF

Dyskerin mediates both the modification of uridine on ribosomal and small nuclear RNAs and the stabilization of the telomerase RNA component (TERC). In human tumors dyskerin expression was found to be associated with both rRNA modification and TERC levels. Moreover, dyskerin overexpression has been linked to unfavorable prognosis in a variety of tumor types, however an explanation for the latter association is not available.

View Article and Find Full Text PDF