Background: Until now, non-invasive prenatal diagnosis of genetic diseases found only limited routine applications. In autosomal recessive diseases, it can be used to determine the carrier status of the fetus through the detection of a paternally inherited disease allele in cases where maternal and paternal mutated alleles differ.
Methods: Conditions for non-invasive identification of fetal paternally inherited mutations in maternal plasma were developed by two independent approaches: coamplification at lower denaturation temperature-PCR (COLD-PCR) and highly sensitive microarrays.
Objectives: The purpose of this study was to compare two cohorts of cystic fibrosis (CF) patients born and treated in two different decades, diagnosed through a CF neonatal screening program.
Methodology: We compared pulmonary function decline from 10 to 15 years of age in patients with cystic fibrosis born between 1979 and 1984 (Cohort 1) and between 1991 and 1996 (Cohort 2). Forced expiratory volume in 1 sec (FEV1%) and forced expiratory flow from 25% to 75% (FEF 25-75%) were analyzed by a linear mixed model approach.
CYP2C9 is a major liver enzyme responsible of the metabolism of many clinically important drugs. The presence of CYP2C9 genetic polymorphisms has been associated with marked interindividual variability in its catalytic activity that could result in drug toxicity. Here we present frequencies of the most common CYP2C9 coding variants CYP2C9*2 (C430T) and CYP2C9*3 (A1075C) in representative samples of four regions from Spain (Basque Country, n=358; Catalonia, n=240; Central Spain, n=190 and Galicia, n=288) and one northern Italian region, (Verona, n=164), which range between 0.
View Article and Find Full Text PDF