This dataset is related to the research paper entitled "Bridge-specific flood risk assessment of transport networks using GIS and remotely sensed data" published in the Science of the Total Environment. It provides the information necessary for the reproduction of the case study that was used for the demonstration and validation of the proposed risk assessment framework. The latter integrates indicators for the assessment of hydraulic hazards and bridge vulnerability with a simple and operationally flexible protocol for the interpretation of bridge damage consequences on the serviceability of the transport network and on the affected socio-economic environment.
View Article and Find Full Text PDFA novel framework for the expedient assessment of flood risk to transportation networks focused on the response of the most critical and vulnerable infrastructure assets, the bridges, is developed, validated and applied. Building upon the recent French guidelines on scour risk (CEREMA, 2019), this paper delivers a thorough methodology, that incorporates three key, risk parameters: (i) the hydrodynamic loading, a hazard component of equal significance to scour, for the assessment of hazard; (ii) the correlation of select scour indicators with a new index relating to flow velocity, a primary measure of the adverse impacts of flow-structure interaction, enabling a more accurate and automated, assessment of bridge susceptibility to scour; (iii) the use of a new, comprehensive indicator, namely the Indicator of Flood Hazard Intensity (IFHI) which incorporates, in a simple yet efficient way, the key parameters controlling the severity of flood impact on bridges, namely flow velocity, floodwater height, flow obstruction, and sediment type. The framework is implemented for the analysis of flood risk in a case study area, considering an inventory of 117 bridges of diverse construction characteristics, which were affected by a major flood that impacted Greece in September 2020.
View Article and Find Full Text PDFFlash floods are common manifestations of extreme weather events and one of the most severe natural hazards. In Europe, they have been responsible for 359 fatalities and an economic loss totalling 67 million USD in the past decade (EM-DAT), while their increasing severity is linked to climate change. Nevertheless, flash floods remain a poorly documented natural phenomenon due to the lack of flow intensity data in many of the affected watersheds.
View Article and Find Full Text PDFEarthq Eng Struct Dyn
December 2014
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed , this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure.
View Article and Find Full Text PDF