Publications by authors named "Marianna Dakanali"

Background: Approval of Locametz and Illuccix kits for the manufacture of [Ga]Ga-PSMA-11 (gallium Ga68 gozetotide), a PET imaging agent for prostate cancer, as well as the corresponding therapeutic ([Lu]Lu-PSMA-617 Pluvicto), has led to a rapid increase in demand for [Ga]Ga-PSMA-11 PET imaging. Radiopharmaceutical manufacturers, using Ge/Ga generators, may decide to adopt Locametz and/or Illuccix kits, which requires a comparison to select the most suitable kit for day-to-day use. The objective of this article is to compare both kits and provide guidance for selecting one for routine use, as well as evaluate labeling consistency of both kits during routine production.

View Article and Find Full Text PDF

After androgen deprivation therapy, a significant number of prostate cancer cases progress with a therapy-resistant neuroendocrine phenotype (NEPC). This represents a challenge for diagnosis and treatment. Based on our previously reported design of theranostic small-molecule prodrug conjugates (T-SMPDCs), herein we report a T-SMPDC tailored for targeted positron emission tomography (PET) imaging and chemotherapy of NEPC.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) encompasses a heterogenous group of tumors, but representative preclinical models are lacking. We previously showed that patient-derived tumorgraft (TG) models recapitulate the biology and treatment responsiveness. Through systematic orthotopic implantation of tumor samples from 926 ethnically diverse individuals into non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice, we generate a resource comprising 172 independently derived, stably engrafted TG lines from 148 individuals.

View Article and Find Full Text PDF

It is well recognized that carbon chirality plays a critical role in the design of drug molecules. However, very little information is available regarding the effect of stereoisomerism of macrocyclic bifunctional chelators (BFC) on biological behaviors of the corresponding radiopharmaceuticals. To evaluate such effects, three enantiopure stereoisomers of a copper radiopharmaceutical BFC bearing two chiral carbon atoms were synthesized in forms of R,R-, S,S-, and R,S-.

View Article and Find Full Text PDF

Natural products of the caged Garcinia xanthones (CGX) family are characterized by a unique chemical structure, potent bioactivities and promising pharmacological profiles. We have developed a Claisen/Diels-Alder reaction cascade that, in combination with a Pd(0)-catalyzed reverse prenylation, provides rapid and efficient access to the CGX pharmacophore, represented by the structure of cluvenone. To further explore this pharmacophore, we have synthesized various A-ring oxygenated analogues of cluvenone and have evaluated their bioactivities in terms of growth inhibition, mitochondrial fragmentation, induction of mitochondrial-dependent cell death and Hsp90 client inhibition.

View Article and Find Full Text PDF

A major challenge for diagnosing and monitoring the progression of amyloid-based diseases is the capability to distinguish between amyloid deposits that are associated with related, but distinctly different, diseases. Here, we demonstrate that aminonaphthalenyl 2-cyanoacrylate-based probes can fluorescently discriminate between different types of amyloid deposits in brain. The discriminating capability of these molecular rotors is due to the stabilization of the ground versus excited states of these probes as a function of the polarity of their microenvironment (i.

View Article and Find Full Text PDF

We describe the design, synthesis and fluorescence profiles of new self-calibrating viscosity dyes in which a coumarin (reference fluorophore) has been covalently linked with a molecular rotor (viscosity sensor). Characterization of their fluorescence properties was made with separate excitation of the units and through resonance energy transfer from the reference to the sensor dye. We have modified the linker and the substitution of the rotor in order to change the hydrophilicity of these probes thereby altering their subcellular localization.

View Article and Find Full Text PDF

The natural product gambogic acid (GA) has shown significant potential as an anticancer agent as it is able to induce apoptosis in multiple tumor cell lines, including multidrug-resistant cell lines, as well as displaying antitumor activity in animal models. Despite the fact that GA has entered phase I clinical trials, the primary cellular target and mode of action of this compound remain unclear, although many proteins have been shown to be affected by it. By thorough analysis of several cellular organelles, at both the morphological and functional levels, we demonstrate that the primary effect of GA is at the mitochondria.

View Article and Find Full Text PDF

Molecular rotors are a group of environment-sensitive fluorescent probes whose quantum yield depends on the ability to form twisted intramolecular charge-transfer (TICT) states. TICT formation is dominantly governed by the solvent's microviscosity, but polarity and the ability of the solvent to form hydrogen bonds play an additional role. The relationship between quantum yield ϕ(F) and viscosity η is widely accepted as a power-law, ϕ(F) = C · η(x).

View Article and Find Full Text PDF

Stabilized 2-amino-1,3-dienes can participate in intramolecular Diels-Alder (IMDA) reactions with pendant dienophiles. We found that these dienes can be readily prepared via standard palladium-mediated coupling reactions and have comparable reactivity to 2-oxodienes. Application of these substrates to the synthesis of tetracyclic model systems representing the ABCE motif of the zoanthamines is presented.

View Article and Find Full Text PDF

A new family of fluorescent markers containing an Amino Naphthalenyl-2-Cyano-Acrylate (ANCA) motif has been synthesized and evaluated for its capability to associate with aggregated β-amyloid (Aβ) peptides. These fluorescent probes contain a nitrogen donor group that is connected via a naphthalene unit to an electron acceptor motif containing Water Solubilizing Groups (WSG). Chemical modifications were introduced to explore their effect on the capability of the ANCA-based probes to fluorescently label aggregated Aβ peptides.

View Article and Find Full Text PDF

An enantioselective strategy for the synthesis of tetracyclic motif 5, representing the northern fragment of norzoanthamine, is presented. Key to the strategy is the use of two asymmetric Robinson annulation reactions that produce the tricyclic ABC ring system with excellent stereoselectivity. Further functionalization at the periphery of the C ring produces compound 5 containing six contiguous stereocenters of the natural product.

View Article and Find Full Text PDF

We describe the design, synthesis and fluorescent profile of a family of self-calibrating dyes that provide ratiometric measurements of fluid viscosity. The design is based on covalently linking a primary fluorophore (reference) that displays a viscosity-independent fluorescence emission with a secondary fluorophore (sensor) that exhibits a viscosity-sensitive fluorescence emission. Characterization of fluorescent properties was made with separate excitation of the units and through Resonance Energy Transfer from the reference to the sensor dye.

View Article and Find Full Text PDF

Molecular rotors are a form of fluorescent intramolecular charge-transfer complexes that can undergo intramolecular twisting motion upon photoexcitation. Twisted-state formation leads to non-radiative relaxation that competes with fluorescence emission. In bulk solutions, these molecules exhibit a viscosity-dependent quantum yield.

View Article and Find Full Text PDF

It has been shown that compounds containing the p-N,N,-dialkylaminobenzylidene cyanoacetate motif can serve as fluorescent non-mechanical viscosity sensors. These compounds, referred to as molecular rotors, belong to a class of fluorescent probes that are known to form twisted intramolecular charge-transfer complexes in the excited state. In this study we present the synthesis and spectroscopic characterization of these compounds as viscosity sensors.

View Article and Find Full Text PDF

Alzheimer’s disease (AD) is characterized by a progressive loss of cognitive function and constitutes the most common and fatal neurodegenerative disorder.[1] Genetic and clinical evidence supports the hypothesis that accumulation of amyloid deposits in the brain plays an important role in the pathology of the disease. This event is associated with perturbations of biological functions in the surrounding tissue leading to neuronal cell death, thus contributing to the disease process.

View Article and Find Full Text PDF

A biomimetic approach toward type A polyprenylated acylphloroglucinols (PPAPs) is described. The method is based on a C-alkylation-cation cyclization reaction sequence, leading to a convenient buildup of molecular complexity, employing the simple and readily available deoxycohumulone and an appropriately functionalized hydroxy halide. Thus, a versatile construction of the fully functionalized bicyclic framework of type A PPAPs (5) was achieved.

View Article and Find Full Text PDF

A series of coumarin analogs, designed and synthesised as potential fluorescent zinc probes were evaluated for their biological activity as anti-inflammatory and antioxidant agents. The effect of the synthesised compounds on inflammation, using the carrageenin-induced rat paw oedema model, was studied. In general, the compounds were found to be potent anti-inflammatory agents (26.

View Article and Find Full Text PDF