Recent research suggests that a polygeneric immunogen made from the venoms of the most medically important viperid and elapid snakes in sub-Saharan Africa could elicit a broader antibody response in horses compared to the current EchiTAb-plus-ICP antivenom, especially against neurotoxic elapid venoms. To test this, 25 horses that have been regularly immunized to produce this antivenom were reimmunized with an immunogen containing 22 venoms from various snake species from the genera , , , and both spitting and non-spitting . The plasma collected from these horses was processed using the caprylic acid method to produce an industrial-scale freeze-dried antivenom.
View Article and Find Full Text PDFSnakebite envenomation is a neglected tropical disease posing a high toll of mortality and morbidity in sub-Saharan Africa. Polyspecific antivenoms of broad effectiveness and specially designed for this region require a detailed understanding of the immunological features of the mamba snake ( spp.) venoms for the selection of the most appropriate antigen combination to produce antivenoms of wide neutralizing scope.
View Article and Find Full Text PDFToxicon
October 2023
Venom-induced consumption coagulopathy and thrombocytopenia are common and potentially severe manifestations of viperid snakebite envenoming since they contribute to local and systemic hemorrhage. Therefore, the assessment of the efficacy of antivenoms to neutralize coagulopathic and thrombocytopenic toxins should be part of the preclinical evaluation of these drugs. To evaluate the efficacy of the polyvalent (Crotalinae) antivenom produced in Costa Rica, in this study we have used a mouse model of coagulopathy and thrombocytopenia induced by the venom of Bothrops asper, based on the bolus intravenous (i.
View Article and Find Full Text PDFBackground: Envenomations by African snakes represent a high burden in the sub-Sahara region. The design and fabrication of polyspecific antivenoms with a broader effectiveness, specially tailored for its use in sub-Saharan Africa, require a better understanding of the immunological features of different Naja spp. venoms of highest medical impact in Africa; and to select the most appropriate antigen combinations to generate antivenoms of wider neutralizing scope.
View Article and Find Full Text PDFToxicon X
June 2023
During the production of snake antivenoms, the animals used as immunoglobulin source are subjected to processes that could deteriorate their physical condition. Therefore, these conditions must be carefully designed and validated. In this work, the immunization and bleeding protocols applied to horses used to produce the African polyspecific antivenom EchiTAb-plus-ICP were evaluated regarding their effects on the horses' health.
View Article and Find Full Text PDFAdjuvant emulsions are widely used to enhance the antibody response in animals used as immunoglobulin source to produce snake antivenoms. We tested the performance of four commercial emulsion adjuvants (Montanide, Freund, Carbigen, and Emulsigen-D) and an experimental adjuvant (QH-769) in the antibody response of horses towards venoms of the African snakes , , and . Montanide, Freund and Carbigen adjuvants generated the highest immune response but induced moderate/severe local lesions at the site of injection.
View Article and Find Full Text PDFBackground: Snakebite envenomation exerts a heavy toll in sub-Saharan Africa. The design and production of effective polyspecific antivenoms for this region demand a better understanding of the immunological characteristics of the different venoms from the most medically important snakes, to select the most appropriate venom combinations for generating antivenoms of wide neutralizing scope. Bitis spp.
View Article and Find Full Text PDFFront Med Technol
January 2022
In the current global emergency due to SARS-CoV-2 outbreak, passive immunotherapy emerges as a promising treatment for COVID-19. Among animal-derived products, equine formulations are still the cornerstone therapy for treating envenomations due to animal bites and stings. Therefore, drawing upon decades of experience in manufacturing snake antivenom, we developed and preclinically evaluated two anti-SARS-CoV-2 polyclonal equine formulations as potential alternative therapy for COVID-19.
View Article and Find Full Text PDFCobras are the most medically important elapid snakes in Africa. The African genera Naja and Hemachatus include snakes with neurotoxic and cytotoxic venoms, with shared biochemical, toxinological and antigenic characteristics. We have studied the antigenic cross-reactivity of four sub-Saharan Africa cobra venoms against an experimental monospecific Hemachatus haemachatus antivenom through comparative proteomics, preclinical assessment of neutralization, and third generation antivenomics.
View Article and Find Full Text PDFThere is an urgent need to strengthen the implementation of the 3Rs principle (Replacement, Reduction and Refinement) in the use of experimental animals in toxinological research and in the assessment of the neutralizing efficacy of snake antivenoms. This is a challenging task owing to the inherent complexity of snake venoms. The state of the art on this topic is hereby reviewed, with emphasis on the studies in which a correlation has been observed between toxicity tests and surrogate assays, particularly in the study of lethal activity of venoms and its neutralization.
View Article and Find Full Text PDFUnlabelled: The protein composition and toxinological profile of the venom of the African spitting elapid Hemachatus haemachatus (Ringhals) were characterized by bottom-up proteomics and functional in vitro and in vivo assays. Venom is composed of abundant three-finger toxins (3FTxs; 63.3%), followed by phospholipases A (PLAs; 22.
View Article and Find Full Text PDFThe assessment of the preclinical neutralizing ability of antivenoms in Latin America is necessary to determine their scope of efficacy. This study was aimed at analyzing the neutralizing efficacy of a polyspecific bothropic-crotalic antivenom manufactured by BIRMEX in Mexico against lethal, hemorrhagic, defibrinogenating and in vitro coagulant activities of the venoms of Bothrops jararaca (Brazil), B. atrox (Perú and Colombia), B.
View Article and Find Full Text PDFHaemorrhage is a common clinical manifestation in envenomings caused by bites from snakes of the family Viperidae. Therefore, knowing the haemorrhagic potential of venoms and the capacity of antivenoms to neutralise this effect are of paramount relevance in toxinology. The most widely used method for quantifying haemorrhage involves the intradermal injection of venom (or a mixture of venom/antivenom) in mice, and the assessment of the resulting haemorrhagic area in the inner side of the skin.
View Article and Find Full Text PDFAnimal-derived antivenoms constitute the mainstay in the therapy of snakebite envenoming. The efficacy of antivenoms to neutralize toxicity of medically-relevant snake venoms has to be demonstrated through meticulous preclinical testing before their introduction into the clinical setting. The gold standard in the preclinical assessment and quality control of antivenoms is the neutralization of venom-induced lethality.
View Article and Find Full Text PDFEchiTAb + ICP is a pan-African antivenom used for the treatment of snakebite envenomation in rural sub-Saharan African communities, where the cold chain can be difficult to maintain. To develop a formulation of EchiTAb + ICP that can be distributed and stored without refrigeration, we submitted three different formulations of EchiTAb + ICP: control (i.e.
View Article and Find Full Text PDF