Publications by authors named "Mariangela Sabatella"

The 10-subunit TFIIH complex is vital to transcription and nucleotide excision repair. Hereditary mutations in its smallest subunit, TTDA/GTF2H5, cause a photosensitive form of the rare developmental disorder trichothiodystrophy. Some trichothiodystrophy features are thought to be caused by subtle transcription or gene expression defects.

View Article and Find Full Text PDF

In a subset of pediatric cancers, a germline cancer predisposition is highly suspected based on clinical and pathological findings, but genetic evidence is lacking, which hampers genetic counseling and predictive testing in the families involved. We describe a family with two siblings born from healthy parents who were both neonatally diagnosed with atypical teratoid rhabdoid tumor (ATRT). This rare and aggressive pediatric tumor is associated with biallelic inactivation of SMARCB1, and in 30% of the cases, a predisposing germline mutation is involved.

View Article and Find Full Text PDF

Hereditary DNA repair defects affect tissues differently, suggesting that in vivo cells respond differently to DNA damage. Knowledge of the DNA damage response, however, is largely based on in vitro and cell culture studies, and it is currently unclear whether DNA repair changes depending on the cell type. Here, we use in vivo imaging of the nucleotide excision repair (NER) endonuclease ERCC-1/XPF-1 in C.

View Article and Find Full Text PDF

DNA damage sensors DDB2 and XPC initiate global genome nucleotide excision repair (NER) to protect DNA from mutagenesis caused by helix-distorting lesions. XPC recognizes helical distortions by binding to unpaired ssDNA opposite DNA lesions. DDB2 binds to UV-induced lesions directly and facilitates efficient recognition by XPC.

View Article and Find Full Text PDF

The effectiveness of many DNA-damaging chemotherapeutic drugs depends on their ability to form monoadducts, intrastrand crosslinks and/or interstrand crosslinks (ICLs) that interfere with transcription and replication. The ERCC1-XPF endonuclease plays a critical role in removal of these lesions by incising DNA either as part of nucleotide excision repair (NER) or interstrand crosslink repair (ICLR). Engagement of ERCC1-XPF in NER is well characterized and is facilitated by binding to the XPA protein.

View Article and Find Full Text PDF

Inadequate delivery of oxygen to organisms during development can lead to cell dysfunction/death and life-long disabilities. Although the susceptibility of developing cells to low oxygen conditions changes with maturation, the cellular and molecular pathways that govern responses to low oxygen are incompletely understood. Here we show that developing Caenorhabditis elegans are substantially more sensitive to anoxia than adult animals and that this sensitivity is controlled by nervous system generated hormones (e.

View Article and Find Full Text PDF

The structure-specific ERCC1-XPF endonuclease plays a key role in DNA damage excision by nucleotide excision repair (NER) and interstrand crosslink repair. Mutations in this complex can either cause xeroderma pigmentosum (XP) or XP combined with Cockayne syndrome (XPCS-complex) or Fanconi anemia. However, most patients carry compound heterozygous mutations, which confounds the dissection of the phenotypic consequences for each of the identified XPF alleles.

View Article and Find Full Text PDF

Sensitivity and resistance of cells to platinum drug chemotherapy are to a large extent determined by activity of the DNA damage response (DDR). Combining chemotherapy with inhibition of specific DDR pathways could therefore improve treatment efficacy. Multiple DDR pathways have been implicated in removal of platinum-DNA lesions, but it is unclear which exact pathways are most important to cellular platinum drug resistance.

View Article and Find Full Text PDF

Unlabelled: Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

XPC recognizes UV-induced DNA lesions and initiates their removal by nucleotide excision repair (NER). Damage recognition in NER is tightly controlled by ubiquitin and SUMO modifications. Recent studies have shown that the SUMO-targeted ubiquitin ligase RNF111 promotes K63-linked ubiquitylation of SUMOylated XPC after DNA damage.

View Article and Find Full Text PDF

Carbonic anhydrase IX (CA IX) is a surrogate marker of hypoxia, involved in survival and pH regulation in hypoxic cells. We have recently characterized its interactome, describing a set of proteins interacting with CA IX, mainly in hypoxic cells, including several members of the nucleocytoplasmic shuttling apparatuses. Accordingly, we described complex subcellular localization for this enzyme in human cells, as well as the redistribution of a carbonic anhydrase IX pool to nucleoli during hypoxia.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Mariangela Sabatella"

  • - Mariangela Sabatella's research primarily focuses on the mechanisms of DNA repair, specifically the roles of various proteins and complexes in nucleotide excision repair and responses to DNA damage across different tissues and cell types.
  • - Her studies utilize models like C. elegans to investigate the impact of specific transcription factors and repair proteins, revealing insights into hereditary conditions such as trichothiodystrophy and Cockayne syndrome, as well as the role of repair pathways in cancer predisposition and drug resistance.
  • - Recent findings highlight the complexity of the DNA damage response, including the importance of protein interactions, tissue-specific responses to damage, and the contribution of neuropeptide signaling to cellular stress resilience, particularly in relations to anoxia in developing organisms.