Publications by authors named "Mariangela Bencivenni"

Article Synopsis
  • - The study analyzed the nitrogen content in 39 different food waste streams using various methods, including Kjeldahl and amino acid analysis, to determine their potential for protein recovery.
  • - It calculated specific nitrogen-to-protein conversion factors for each waste stream, identifying those high in valuable proteins (like dairy waste and brewing by-products) as well as those low in nutritional quality.
  • - This research provides the most comprehensive assessment of the nitrogen fraction in food waste to date, detailing both the potentials and limitations of using these materials as protein sources.
View Article and Find Full Text PDF

In the present paper, 26 food waste streams were selected according to their exploitation potential and investigated in terms of pectin content. The isolated pectin, subdivided into calcium bound and alkaline extractable pectin, was fully characterized in terms of uronic acid and other sugar composition, methylation and acetylation degree. It was shown that many waste streams can be a valuable source of pectin, but also that pectin structures present a huge structural diversity, resulting in a broad range of pectin structures.

View Article and Find Full Text PDF

Non-specific lipid-transfer proteins (nsLTPs) are major human allergens in many plant species, albeit their role in plant biochemistry is still undefined. They are found in many plant species, either as one or several isoforms according to the species, and usually they are found to concentrate in the outer part of the fruits. In this work, the characterization of tomato nsLTP isoforms was performed on the three main fractions of Piccadilly tomato fruit (peel, pulp and seeds) by using ultracentrifuge devices with molecular cut-off able to retain proteins with molecular weight typical of plant LTPs.

View Article and Find Full Text PDF

Peptide nucleic acids (PNAs) are synthetic oligonucleotide analogues based on a pseudopeptide backbone that bind complementary DNA or RNA with high affinity and specificity. In this chapter, three PNA-based genotyping assays are described: PCR clamping, fluorescence-based recognition, and microarray platform. The first two methods are performed in solution, while the microarray method uses a solid surface.

View Article and Find Full Text PDF

In the present paper, a proteomic method for species determination in fibres has been developed. Keratin was extracted from yak, wool and cashmere fibres and digested by trypsin, providing peptide mixtures that were analyzed by liquid chromatography coupled with electrospray mass spectrometry (LC/ESI-MS) in order to identify peptidic species-specific markers able to differentiate the fibres. Several suitable peptide markers were identified and validated in different fibres of different origin and having undergone different technological treatments, showing 100% specificity and 100% selectivity.

View Article and Find Full Text PDF

A method to detect the presence of common wheat in durum wheat flour samples was developed and tested. Flour samples, or ground wheat samples, were digested by pepsin and chymotrypsin, and the peptide mixture obtained was analyzed by LC/ESI-MS and LC/ESI-MS/MS, which led to the identification of two marker peptides. One peptide was coded only in the DD genome, and thus present only in common wheat; the second was present in all wheat samples (both common and durum), so it was used as marker of the total wheat content.

View Article and Find Full Text PDF

The design and development of a PNA microarray designed for the simultaneous identification of several SNPs characteristic of seven different tomato varieties is described. Highly selective arginine-based monomer containing PNAs (Arg-PNAs) have been used in order to obtain very selective probes. Seven modified PNA probes were synthesised and their binding properties in solution were studied.

View Article and Find Full Text PDF

Two peptide nucleic acids (PNAs) containing three adjacent modified chiral monomers (chiral box) were synthesized. The chiral monomers contained either a C2- or a C5-modified backbone, synthesized starting from D- and L-arginine, respectively (2D- and 5L-PNA). The C2-modified chiral PNA was synthesized using a submonomeric strategy to avoid epimerization during solid-phase synthesis, whereas for the C5-derivative, the monomers were first obtained and then used in solid-phase synthesis.

View Article and Find Full Text PDF