Background: Neuroinflammation in Alzheimer's disease (AD) can occur due to excessive activation of microglia in response to the accumulation of amyloid-β peptide (Aβ). Previously, we demonstrated an increased expression of this peptide in the locus coeruleus (LC) in a sporadic model for AD (streptozotocin, STZ; 2 mg/kg, ICV). We hypothesized that the STZ-AD model exhibits neuroinflammation, and treatment with an inhibitor of microglia (minocycline) can reverse the cognitive, respiratory, sleep, and molecular disorders of this model.
View Article and Find Full Text PDFSerotonin (5-HT) is an important modulator of brain networks that control breathing. The selective serotonin reuptake inhibitor fluoxetine (FLX) is the first-line antidepressant drug prescribed during pregnancy. We investigated the effects of prenatal FLX exposure on baseline breathing, ventilatory and metabolic responses to hypercapnia and hypoxia as well as number of brainstem 5-HT and tyrosine hydroxylase (TH) neurons of rats during postnatal development (P0-82).
View Article and Find Full Text PDFLight/dark cycle affects the physiology of vertebrates and hypothalamic orexin neurons (ORX) are involved in this function. The breathing pattern of the green iguana changes from continuous to episodic across the light/dark phases. Since the stimulatory actions of ORX on breathing are most important during arousal, we hypothesized that ORX regulates changes of breathing pattern in iguanas.
View Article and Find Full Text PDFThe anteroventral preoptic region (AVPO) of the hypothalamus is involved in both temperature and breathing regulation. This area densely express cannabinoid receptors type 1 (CB1) that modulate both excitatory and inhibitory synaptic transmission. However, it is still unknown if the endocannabinoid system located in the AVPO participates in breathing control and thermoregulation.
View Article and Find Full Text PDFThe locus coeruleus (LC) is a pontine nucleus important for respiratory control and central chemoreception. It is affected in Alzheimer's disease (AD) and alteration of LC cell function may account for respiratory problems observed in AD patients. In the current study, we tested the electrophysiological properties and CO/pH sensitivity of LC neurons in a model for AD.
View Article and Find Full Text PDFBesides the typical cognitive decline, patients with Alzheimer's disease (AD) develop disorders of the respiratory system, such as sleep apnea, shortness of breath, and arrhythmias. These symptoms are aggravated with the progression of the disease. However, the cause and nature of these disturbances are not well understood.
View Article and Find Full Text PDFRespir Physiol Neurobiol
November 2017
Several evidences indicate that the locus coeruleus (LC) is involved in central chemoreception responding to CO/pH and displaying a high percentage of chemosensitive neurons (>80%). However, there are no studies about the LC-mediated hypercapnic ventilation performed in females. Therefore, we assessed the role of noradrenergic LC neurons in non-ovariectomized (NOVX), ovariectomized (OVX) and estradiol (E2)-treated ovariectomized (OVX+E2) rats in respiratory response to hypercapnia, using a 6-hydroxydopamine (6-OHDA) - lesion model.
View Article and Find Full Text PDFRespir Physiol Neurobiol
February 2017
The Locus coeruleus (LC) is a pontine area that contributes to the CO/pH chemosensitivity. LC cells express erythropoietin (Epo) receptors (EpoR), and Epo in the brainstem is a potent normoxic and hypoxic respiratory stimulant. However, a recent study showed that the intra-cisternal injection (ICI) of Epo antagonist does not alter the hypercapnic ventilatory response in mice.
View Article and Find Full Text PDFThe orexins are hypothalamic neuropeptides involved in an array of functions such as regulation of sleep/wake states and chemoreception to CO2/pH. The locus coeruleus (LC) is a chemosensitive site and expresses an extensive population of orexin receptor 1 (OX1R). We tested the hypothesis that OX1Rs located in the LC participate in the ventilatory response to hypercapnia in a vigilance state and diurnal cycle-dependent manner.
View Article and Find Full Text PDFThe locus coeruleus (LC) is a dorsal pontine region, situated bilaterally on the floor of the fourth ventricle. It is considered to be the major source of noradrenergic innervation in the brain. These neurons are highly sensitive to CO2/pH, and chemical lesions of LC neurons largely attenuate the hypercapnic ventilatory response in unanesthetized adult rats.
View Article and Find Full Text PDF