It is well known that the sedimentary rock record is both incomplete and biased by spatially highly variable rates of sedimentation. Without absolute age constraints of sufficient resolution, the temporal correlation of spatially disjunct records is therefore problematic and uncertain, but these effects have rarely been analysed quantitatively using signal processing methods. Here we use a computational process model to illustrate and analyse how spatial and temporal geochemical records can be biased by the inherent, heterogenous processes of marine sedimentation and preservation.
View Article and Find Full Text PDFThe drivers of Ediacaran-Cambrian metazoan radiations remain unclear, as does the fidelity of the record. We use a global age framework [580-510 million years (Ma) ago] to estimate changes in marine sedimentary rock volume and area, reconstructed biodiversity (mean genus richness), and sampling intensity, integrated with carbonate carbon isotopes (δC) and global redox data [carbonate Uranium isotopes (δU)]. Sampling intensity correlates with overall mean reconstructed biodiversity >535 Ma ago, while second-order (~10-80 Ma) global transgressive-regressive cycles controlled the distribution of different marine sedimentary rocks.
View Article and Find Full Text PDF