Publications by authors named "Mariana Rios"

Objective: The objective was to identify validated instruments from the literature that assess the mental health of police officers.

Methods: This is a systematic review of validated instruments used to assess the mental health of police officers. Searches were conducted in the MEDLINE, Web of Science, Scopus, Embase, CINAHL/EBSCO, and Virtual Health Library databases.

View Article and Find Full Text PDF

Background: The Omicron variant has challenged the control of the COVID-19 pandemic due to its immuno-evasive properties. The administration of a booster dose of a SARS-CoV-2 vaccine showed positive effects in the immunogenicity against SARS-CoV-2, effect that is even enhanced after the administration of a second booster.

Methods: During a phase-3 clinical trial, we evaluated the effect of a second booster of CoronaVac®, an inactivated vaccine administered 6 months after the first booster, in the neutralization of SARS-CoV-2 (n = 87).

View Article and Find Full Text PDF

Multiple vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been evaluated in clinical trials. However, trials addressing the immune response in the pediatric population are scarce. The inactivated vaccine CoronaVac has been shown to be safe and immunogenic in a phase 1/2 clinical trial in a pediatric cohort in China.

View Article and Find Full Text PDF

Background: The development of vaccines to control the coronavirus disease 2019 (COVID-19) pandemic progression is a worldwide priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine approved for emergency use with robust efficacy and immunogenicity data reported in trials in China, Brazil, Indonesia, Turkey, and Chile.

Methods: This study is a randomized, multicenter, and controlled phase 3 trial in healthy Chilean adults aged ≥18 years.

View Article and Find Full Text PDF

Maternal thyroid hormones (THs) are essential for the appropriate development of the fetus and especially for the brain. Recently, some studies have shown that THs deficiency can also alter the immune system development of the progeny and their ability to mount an appropriate response against infectious agents. In this study, we evaluated whether adult mice gestated under hypothyroxinemia (Hpx) showed an altered immune response against infection with human metapneumovirus (hMPV).

View Article and Find Full Text PDF
Article Synopsis
  • CoronaVac is an inactivated SARS-CoV-2 vaccine approved by the WHO, showing decreased immune response over time after the initial two doses.
  • A study in Chile tested the effects of a booster dose on immune response to the Delta and Omicron variants, finding significant increases in neutralizing antibodies and T cell activation four weeks later.
  • These findings indicate that a booster dose of CoronaVac effectively enhances immunity against SARS-CoV-2 and its variants, suggesting it provides adequate protection for adults.
View Article and Find Full Text PDF

A dysregulated immune response toward self-antigens characterizes autoimmune and autoinflammatory (AIF) disorders. Autoantibodies or autoreactive T cells contribute to autoimmune diseases, while autoinflammation results from a hyper-functional innate immune system. Aside from their differences, many studies suggest that monocytes and macrophages (Mo/Ma) significantly contribute to the development of both types of disease.

View Article and Find Full Text PDF

Background: CoronaVac is an inactivated SARS-CoV-2 vaccine approved by the World Health Organization. Previous studies reported increased levels of neutralizing antibodies and specific T cells two- and four-weeks after two doses of CoronaVac , but the levels of neutralizing antibodies are reduced at six to eight months after two doses. Here we report the effect of a booster dose of CoronaVac on the anti-SARS-CoV-2 immune response generated against variants of concern (VOC) Delta and Omicron in adults participating in a phase 3 clinical trial in Chile.

View Article and Find Full Text PDF

Background: The ongoing COVID-19 pandemic has had a significant impact worldwide, with an incommensurable social and economic burden. The rapid development of safe and protective vaccines against this disease is a global priority. CoronaVac is a vaccine prototype based on inactivated SARS-CoV-2, which has shown promising safety and immunogenicity profiles in pre-clinical studies and phase 1/2 trials in China.

View Article and Find Full Text PDF

Background: Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to CoronaVac vaccine in these patients.

View Article and Find Full Text PDF

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible of the current pandemic ongoing all around the world. Since its discovery in 2019, several circulating variants have emerged and some of them are associated with increased infections and death rate. Despite the genetic differences among these variants, vaccines approved for human use have shown a good immunogenic and protective response against them.

View Article and Find Full Text PDF

Constant efforts to prevent infections by severe acute respiratory syndrome coronavirus 2 (SARSCoV2 are actively carried out around the world. Several vaccines are currently approved for emergency use in the population, while ongoing studies continue to provide information on their safety and effectiveness. CoronaVac is an inactivated SARS-CoV-2 vaccine with a good safety and immunogenicity profile as seen in phase 1, 2, and 3 clinical trials around the world, with an effectiveness of 65.

View Article and Find Full Text PDF

Background: The development of effective vaccines against coronavirus disease 2019 is a global priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine with promising safety and immunogenicity profiles. This article reports safety and immunogenicity results obtained for healthy Chilean adults aged ≥18 years in a phase 3 clinical trial.

View Article and Find Full Text PDF

Allergic asthma is a chronic airway inflammatory response to different triggers like inhaled allergens. Excessive ATP in fluids from patients with asthma is considered an inflammatory signal and an important autocrine/paracrine modulator of airway physiology. Here, we investigated the deleterious effect of increased extracellular ATP (eATP) concentration on the mucociliary clearance (MCC) effectiveness and determined the role of ATP releasing channels during airway inflammation in an ovalbumin (OVA)-sensitized mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammation in airway epithelial cells is crucial for understanding respiratory diseases, as damage to the pulmonary barrier allows serum proteins to enter the airways.
  • Human glycated albumin (GA) triggers an inflammatory response by inducing the secretion of IL-8 from airway epithelial cells, with this response being significantly more potent than other known stimulants like TNF or LPS.
  • GA not only promotes IL-8 secretion but also increases the ciliary beat frequency in airway epithelial cells, suggesting its role in airway inflammation and the need for further research to determine its binding mechanisms.
View Article and Find Full Text PDF

Vaccines represent an important strategy to protect humans against a wide variety of pathogens and have even led to eradicating some diseases. Although every vaccine is developed to induce specific protection for a particular pathogen, some vaccine formulations can also promote trained immunity, which is a non-specific memory-like feature developed by the innate immune system. It is thought that trained immunity can protect against a wide variety of pathogens other than those contained in the vaccine formulation.

View Article and Find Full Text PDF

The heme oxygenase (HO) system involves three isoforms of this enzyme, HO-1, HO-2, and HO-3. The three of them display the same catalytic activity, oxidating the heme group to produce biliverdin, ferrous iron, and carbon monoxide (CO). HO-1 is the isoform most widely studied in proinflammatory diseases because treatments that overexpress this enzyme promote the generation of anti-inflammatory products.

View Article and Find Full Text PDF

The human respiratory syncytial virus (hRSV) is the most common infectious agent that affects children before two years of age. hRSV outbreaks cause a significant increase in hospitalizations during the winter season associated with bronchiolitis and pneumonia. Recently, neurologic alterations have been associated with hRSV infection in children, which include seizures, central apnea, and encephalopathy.

View Article and Find Full Text PDF

Heme oxygenase (HO) is the primary antioxidant enzyme involved in heme group degradation. A variety of stimuli triggers the expression of the inducible HO-1 isoform, which is modulated by its substrate and cellular stressors. A major anti-inflammatory role has been assigned to the HO-1 activity.

View Article and Find Full Text PDF

Current treatments for systemic autoimmune diseases partially improve the health of patients displaying low pharmacological efficacy and systemic immunosuppression. Here, the therapeutic potential of transferring tolerogenic dendritic cells (tolDCs) generated with heme-oxygenase inductor cobalt (III) protoporphyrin IX (CoPP), dexamethasone and rosiglitazone for the treatment of systemic autoimmunity was evaluated in two murine models of systemic lupus erythematosus (SLE), MRL-Fas and NZM2410 mice. Dendritic cells treated ex vivo with these drugs showed a stable tolerogenic profile after lipopolysaccharide stimulation.

View Article and Find Full Text PDF

Central Nervous System (CNS) infections are one of the most critical problems in public health, as frequently patients exhibit neurologic sequelae. Usually, CNS pathologies are caused by known neurotropic viruses such as measles virus (MV), herpes virus and human immunodeficiency virus (HIV), among others. However, nowadays respiratory viruses have placed themselves as relevant agents responsible for CNS pathologies.

View Article and Find Full Text PDF

Ciliary beat frequency (CBF) regulates the oviductal transport of oocytes and embryos, which are important components of the reproductive process. Local release of ATP transiently increases CBF by increasing [Ca2+]i. Ovarian hormones also regulate ciliary activity and oviductal transport.

View Article and Find Full Text PDF

Macrophages are extremely heterogeneous and plastic cells with an important role not only in physiological conditions, but also during inflammation (both for initiation and resolution). In the early 1990s, two different phenotypes of macrophages were described: one of them called classically activated (or inflammatory) macrophages (M1) and the other alternatively activated (or wound-healing) macrophages (M2). Currently, it is known that functional polarization of macrophages into only two groups is an over-simplified description of macrophage heterogeneity and plasticity; indeed, it is necessary to consider a continuum of functional states.

View Article and Find Full Text PDF

Key Points: Extracellular ATP, in association with [Ca ] regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity.

View Article and Find Full Text PDF

In airway epithelium, mucociliary clearance (MCC) velocity depends on the ciliary beat frequency (CBF), and it is affected by mucus viscoelastic properties. Local inflammation induces secretion of cytokines (TNF) that can alter mucus viscosity; however airway ciliated cells have an autoregulatory mechanism to prevent the collapse of CBF in response to increase in mucus viscosity, mechanism that is associated with an increment in intracellular Ca level ([Ca]). We studied the effect of TNF on the autoregulatory mechanism that regulates CBF in response to increased viscosity using dextran solutions, in ciliated cells cultured from human pediatric epithelial adenoid tissue.

View Article and Find Full Text PDF