Background: Most syndromes of accelerated aging are caused by mutations affecting the integrity of the genetic material. Among them, the most studied is Werner's syndrome, "adult progeria", caused by a recessive autosomal mutation with a frequency of 1 in 10 million, which affects a helicase involved in DNA repair. In Werner syndrome, there is a loss of heterochromatin, though the stability of heterochromatin is also affected in "normal" aging.
View Article and Find Full Text PDFIntroduction And Aims: There are over 300 hypotheses of aging, but none of them has enough predictive power to explain most experiments and observations on this process. On the basis of a critical analysis of the most relevant data on aging, especially on the factors that influences its rhythm, we present a new hypothesis, as well as the way the hypothesis' predictions explain some of the phylogenetic implications of the aging process.
Methods: The hypothesis starts from a new, biochemical view on evolution and the behavior of living matter.