Publications by authors named "Mariana P Boneva"

In a previous study, we established that the attraction between electrically charged particles attached to a water/tetradecane interface is stronger than predicted on the basis of the gravity-induced lateral capillary force. Here, our goal is to explain this effect. The investigated particles are hydrophobized glass spheres of radii between 240 and 320 microm.

View Article and Find Full Text PDF

Here, we propose a method for determining the stoichiometry of acid-soap crystallites. The method is based on dissolving the crystallites in water at an appropriate working temperature, followed by measurement of the electrolytic conductivity of the obtained solutions. The working temperature is chosen in such a way that the only precipitate in the solutions is that of carboxylic acid, whereas the carboxylate salt is dissociated, and its content in the dissolved crystals determines the solution's conductivity.

View Article and Find Full Text PDF

Here, we investigate experimentally and theoretically the motion of spherical glass particles of radii 240-310 microm attached to a tetradecane-water interface. Pairs of particles, which are moving toward each other under the action of lateral capillary force, are observed by optical microscopy. The purpose is to check whether the particle electric charges influence the particle motion, and whether an electric-field-induced capillary attraction could be detected.

View Article and Find Full Text PDF

Here, we consider in detail the problem of the shape of the capillary meniscus around a charged colloidal particle, which is attached to a fluid interface: oil/water or air/water. The meniscus profile is influenced by the electric field created by charges at the particle/nonpolar fluid boundary. We digitized the coordinates of points from the meniscus around silanized glass spheres (200-300 mum in radius) attached to the tetradecane/water interface.

View Article and Find Full Text PDF

We report experimental results which show that the interfacial deformation around glass particles (radius, 200-300 microm) at an oil-water (or air-water) interface is dominated by an electric force, rather than by gravity. It turns out that this force, called for brevity "electrodipping," is independent of the electrolyte concentration in the water phase. The force is greater for oil-water than for air-water interfaces.

View Article and Find Full Text PDF