Recognition and internalisation of intracellular pathogens by host cells is a multifactorial process, involving both stable and transient interactions. The plasticity of the host cell plasma membrane is fundamental in this infectious process. Here, the participation of macrophage lipid microdomains during adhesion and internalisation of the fungal pathogen Histoplasma capsulatum (Hc) was investigated.
View Article and Find Full Text PDFThe dimorphic fungal pathogen Histoplasma capsulatum is the most frequent cause of clinically significant fungal pneumonia in humans. H. capsulatum virulence is achieved, in part, through diverse and dynamic alterations to the fungal cell surface.
View Article and Find Full Text PDFHistoplasma capsulatum can efficiently survive within macrophages, facilitating H. capsulatum translocation from the lung into the lymphatics and bloodstream. We have recently generated monoclonal antibodies (MAbs) to an H.
View Article and Find Full Text PDFMonoclonal antibodies to Histoplasma capsulatum can modify pathogenesis. We now show that monoclonal antibody H1C to a 70-kDa antigen increases intracellular fungal growth and reduces macrophage nitric oxide release but has no effect on fungal burden or survival in murine infection. This further demonstrates the complexities of host-pathogen interactions.
View Article and Find Full Text PDF