Electrocatalysts alter their structure and composition during reaction, which can in turn create new active/selective phases. Identifying these changes is crucial for determining how morphology controls catalytic properties but the mechanisms by which operating conditions shape the catalyst's working state are not yet fully understood. In this study, we show using correlated operando microscopy and spectroscopy that as well-defined CuO cubes evolve under electrochemical nitrate reduction reaction conditions, distinct catalyst motifs are formed depending on the applied potential and the chemical environment.
View Article and Find Full Text PDFCopper and nitrogen co-doped carbon catalysts exhibit a remarkable behavior during the electrocatalytic CO reduction (CORR), namely, the formation of metal nanoparticles from Cu single atoms, and their subsequent reversible redispersion. Here we show that the switchable nature of these species holds the key for the on-demand control over the distribution of CORR products, a lack of which has thus far hindered the wide-spread practical adoption of CORR. By intermitting pulses of a working cathodic potential with pulses of anodic potential, we were able to achieve a controlled fragmentation of the Cu particles and partial regeneration of single atom sites.
View Article and Find Full Text PDF