Publications by authors named "Mariana Argenziano"

Background: To date, Alzheimer's disease (AD) research has principally focused on neurons. In contrast, recent studies suggest that genetic mechanisms drive microglia towards prolonged inflammation in AD brains, exacerbating neurodegeneration. Indeed, many of the 70 disease-associated loci uncovered with genome-wide association studies (GWAS) reside near genes related to microglial function, such as TREM2.

View Article and Find Full Text PDF

Late-onset Alzheimer's disease (LOAD) research has principally focused on neurons over the years due to their known role in the production of amyloid beta plaques and neurofibrillary tangles. In contrast, recent genomic studies of LOAD have implicated microglia as culprits of the prolonged inflammation exacerbating the neurodegeneration observed in patient brains. Indeed, recent LOAD genome-wide association studies (GWAS) have reported multiple loci near genes related to microglial function, including , , and .

View Article and Find Full Text PDF

Background: Atrial fibrillation has an estimated prevalence of 1.5-2%, making it the most common cardiac arrhythmia. The processes that cause and sustain the disease are still not completely understood.

View Article and Find Full Text PDF

Background: Friedreich's ataxia (FRDA) is an autosomal recessive disease, whereby homozygous inheritance of an expanded GAA trinucleotide repeat expansion in the first intron of the FXN gene leads to transcriptional repression of the encoded protein frataxin. FRDA is a progressive neurodegenerative disorder, but the primary cause of death is heart disease which occurs in 60% of the patients. Several functions of frataxin have been proposed, but none of them fully explain why its deficiency causes the FRDA phenotypes nor why the most affected cell types are neurons and cardiomyocytes.

View Article and Find Full Text PDF

We previously demonstrated that in Alzheimer's disease (AD) patients, European apolipoprotein E (APOE) ε4 carriers express significantly more APOE ε4 in their brains than African AD carriers. We examined single nucleotide polymorphisms near APOE with significant frequency differences between African and European/Japanese APOE ε4 haplotypes that could contribute to this difference in expression through regulation. Two enhancer massively parallel reporter assay (MPRA) approaches were performed, supplemented with single fragment reporter assays.

View Article and Find Full Text PDF

Mutations in the gene (encoding lamin A/C) are a significant cause of familial arrhythmogenic cardiomyopathy. Although the penetrance is high, there is considerable phenotypic variability in disease onset, rate of progression, arrhythmias, and severity of myopathy. To begin to address whether this variability stems from specific mutation sites and types, we generated seven patient-specific induced pluripotent stem cell (iPSC) lines with various mutations.

View Article and Find Full Text PDF

Dilated Cardiomyopathy (DCM) is one of the main causes of sudden cardiac death and heart failure and is the leading indication for cardiac transplantation worldwide. Mutations in different genes including TTN, MYH7, and LMNA, have been linked to the development of DCM. Here, we generated a human induced pluripotent stem cell (IPSC) line from a DCM patient with a familial history that carries a frameshift mutation in Filamin C (FLNC).

View Article and Find Full Text PDF

Friedreich's Ataxia (FA) is an autosomal recessive disorder with an incidence of 1 in 50,000 in Caucasians. Most cases are caused by a biallelic GAA expansion in the first intron of the Frataxin (FXN) gene. FA is a neurodegenerative disease, but the leading cause of death is hypertrophic cardiomyopathy (HCM) that develops in 60% of the patients.

View Article and Find Full Text PDF

Mutations in the gene that encodes the nuclear envelope proteins lamin A/C (LMNA) are considered to be a prominent cause of Dilated cardiomyopathy (DCM), a leading cause of heart failure and a prevalent indication for heart transplant. Here we described the generation of induced pluripotent stem cells (iPSCs) from a 53-year-old female with DCM plus progressive conduction disease who carry a heterozygous mutation in LMNA (c.1621C > T, p.

View Article and Find Full Text PDF

Neurodevelopmental disorders are thought to arise from interrupted development of the brain at an early age. Genome-wide association studies (GWAS) have identified hundreds of loci associated with susceptibility to neurodevelopmental disorders; however, which noncoding variants regulate which genes at these loci is often unclear. To implicate neuronal GWAS effector genes, we performed an integrated analysis of transcriptomics, epigenomics and chromatin conformation changes during the development from Induced pluripotent stem cell-derived neuronal progenitor cells (NPCs) into neurons using a combination of high-resolution promoter-focused Capture-C, ATAC-seq and RNA-seq.

View Article and Find Full Text PDF

The relationship between cardiac excitability and contractility depends on when Ca influx occurs during the ventricular action potential (AP). In mammals, it is accepted that Ca influx through the L-type Ca channels occurs during AP phase 2. However, in murine models, experimental evidence shows Ca influx takes place during phase 1.

View Article and Find Full Text PDF

Background: Heart failure (HF) is a leading cause of mortality and is associated with cardiac remodeling. Vulnerability to atrial fibrillation (AF) has been shown to be greater in the early stages of HF, whereas ventricular tachycardia/fibrillation develop during late stages. Here, we explore changes in gene expression that underlie the differential development of fibrosis and structural alterations that predispose to atrial and ventricular arrhythmias.

View Article and Find Full Text PDF

Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome characterized by ST-segment elevation in right precordial ECG leads and associated with sudden cardiac death in young adults. The ECG manifestations of BrS are often concealed but can be unmasked by sodium channel blockers and fever. Areas covered: Implantation of a cardioverter defibrillator (ICD) is first-line therapy for BrS patients presenting with prior cardiac arrest or documented VT.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC)-derived atrial cardiomyocytes (CMs) hold great promise for elucidating underlying cellular mechanisms that cause atrial fibrillation (AF). In order to use atrial-like hiPSC-CMs for arrhythmia modeling, it is essential to better understand the molecular and electrophysiological phenotype of these cells. We performed comprehensive molecular, transcriptomic, and electrophysiologic analyses of retinoic acid (RA)-guided hiPSC atrial-like CMs and demonstrate that RA results in differential expression of genes involved in calcium ion homeostasis that directly interact with an RA receptor, chicken ovalbumin upstream promoter-transcription factor 2 (COUP-TFII).

View Article and Find Full Text PDF

The voltage-gated cardiac sodium channel (Na1.5) is a mega-complex comprised of a pore-forming α subunit and 4 ancillary β-subunits together with numerous protein partners. Genetic defects in the form of rare variants in one or more sodium channel-related genes can cause a loss- or gain-of-function of sodium channel current (I) leading to the manifestation of various disease phenotypes, including Brugada syndrome, long QT syndrome, progressive cardiac conduction disease, sick sinus syndrome, multifocal ectopic Purkinje-related premature contractions, and atrial fibrillation.

View Article and Find Full Text PDF

In most species androgens shorten the cardiac action potential and reduce the risk of afterdepolarizations. Despite the central role of the rat model in physiological studies, the effects of androgens on the rat heart are still inconclusive. We therefore performed electrophysiological studies on the perfused rat right ventricular free wall.

View Article and Find Full Text PDF

Abnormal intracellular Ca(2+) cycling plays a key role in cardiac dysfunction, particularly during the setting of ischemia/reperfusion (I/R). During ischemia, there is an increase in cytosolic and sarcoplasmic reticulum (SR) Ca(2+). At the onset of reperfusion, there is a transient and abrupt increase in cytosolic Ca(2++), which occurs timely associated with reperfusion arrhythmias.

View Article and Find Full Text PDF

Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii.

View Article and Find Full Text PDF