Suppressor of deltex () is a member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent signalling, the latter involving trafficking through the endocytic pathway and activation of the endo/lysosomal membrane. Mutations of result in developmental phenotypes in the wing that reflect increased Notch signalling, leading to gaps in the specification of the wing veins, and functions to provide the developmental robustness of Notch activity to environmental temperature shifts.
View Article and Find Full Text PDFThe developmental signalling protein Notch can be proteolytically activated following ligand-interaction at the cell surface, or can be activated independently of its ligands, following Deltex (Dx)-induced Notch endocytosis and trafficking to the lysosomal membrane. The means by which different pools of Notch are directed towards these alternative outcomes remains poorly understood. We found that the ZO-1 protein Polychaetoid (Pyd) suppresses specifically the Dx-induced form of Notch activation both and in cell culture assays.
View Article and Find Full Text PDFBackground: Stem cells can respond to environmental and physiological inputs to adaptively remodel tissues. Little is known about whether stem cell niches are similarly responsive. The Drosophila ovary germline stem cell (GSC) niche is a well-studied model, which is comprised of cap cells that provide anchorage and maintenance signals for GSCs to maintain oogenesis.
View Article and Find Full Text PDFDevelopmental signaling is remarkably robust to environmental variation, including temperature. For example, in ectothermic animals such as Drosophila, Notch signaling is maintained within functional limits across a wide temperature range. We combine experimental and computational approaches to show that temperature compensation of Notch signaling is achieved by an unexpected variety of endocytic-dependent routes to Notch activation which, when superimposed on ligand-induced activation, act as a robustness module.
View Article and Find Full Text PDFCell signaling mediated by the Notch receptor (N) regulates many cell-fate decisions and is partly controlled by the endocytic trafficking of N. Drosophila deltex (dx) encodes an evolutionarily conserved regulator of N signaling, an E3-ubiquitin ligase, which ubiquitinates N's intracellular domain. Although Dx was shown to function in N endocytosis in studies of dx over-expression, the roles of endogenous Dx have remained hidden.
View Article and Find Full Text PDFZona occludens (ZO) proteins are molecular scaffolds localized to cell junctions, which regulate epithelial integrity in mammals. Using newly generated null alleles, we demonstrate that polychaetoid (pyd), the unique Drosophila melanogaster ZO homologue, regulates accumulation of adherens junction-localized receptors, such as Notch, although it is dispensable for epithelial polarization. Pyd positively regulates Notch signaling during sensory organ development but acts negatively on Notch to restrict the ovary germline stem cell niche.
View Article and Find Full Text PDFDSL ligands promote proteolysis of the Notch receptor, to release active Notch intracellular domain (N(ICD)). Conversely, the E3 ubiquitin ligase Deltex can activate ligand-independent Notch proteolysis and signaling. Here we show that Deltex effects require endocytic trafficking by HOPS and AP-3 complexes.
View Article and Find Full Text PDFThe Notch receptor and its ligands are key components in a core metazoan signaling pathway that regulates the spatial patterning, timing and outcome of many cell-fate decisions. Ligands contain a disulfide-rich Delta/Serrate/LAG-2 (DSL) domain required for Notch trans-activation or cis-inhibition. Here we report the X-ray structure of a receptor binding region of a Notch ligand, the DSL-EGF3 domains of human Jagged-1 (J-1(DSL-EGF3)).
View Article and Find Full Text PDFWe have determined by reverse Southern analysis and direct sequence comparisons that most of the dumpy gene has evolved in the dipteran and other insect orders by purifying selection acting on amino acid replacements. One region, however, is evolving rapidly due to unequal crossing over and/or gene conversion. This region, called "PIGSFEAST," or PF, encodes in D.
View Article and Find Full Text PDFNotch receptor signalling plays a central role in development and its misfunction has been linked to a number of diseases. In the cannonical Notch signalling pathway, ligand binding to Notch activates a series of proteolytic cleavages that release the Notch intracellular domain for trafficking to the nucleus, where it activates the transcription factor, Suppressor of Hairless (Su(H)). A number of recent papers have demonstrated the importance of endocytic trafficking of Notch and its ligands for both the activation and the down-regulation of the Notch receptor.
View Article and Find Full Text PDFThe Notch receptor mediates a short-range signal that regulates many cell fate decisions. The misregulation of Notch has been linked to cancer and to developmental disorders. Upon binding to its ligands, Delta (Dl) or Serrate (Ser), the Notch ectodomain is shed by the action of an ADAM protease.
View Article and Find Full Text PDFIn Drosophila, Suppressor of deltex (Su(dx)) mutations display a wing vein gap phenotype resembling that of Notch gain of function alleles. The Su(dx) protein may therefore act as a negative regulator of Notch but its activity on actual Notch signalling levels has not been demonstrated. Here we show that Su(dx) does regulate the level of Notch signalling in vivo, upstream of Notch target genes and in different developmental contexts, including a previously unknown role in leg joint formation.
View Article and Find Full Text PDF