In this study, we investigated the occurrence of plasmid-mediated quinolone resistance (PMQR) in extended-spectrum β-lactamase- (ESBL) and/or AmpC-type β-lactamase-producing isolates from free-living birds in Poland. The prevalence of the gene was 63%, and the distribution of isolates in terms of bacterial species was as follows: 67% (22/33) corresponded to , 83% (5/6) to , 44% (4/9) to and 33% (1/3) to . The gene was also found in a single isolate of .
View Article and Find Full Text PDFWe present here an alternative for two-promoter systems ensuring highly diverse expression of several genes from a single promoter. This approach assumes an introduction of a deletion mutation into an A/T homopolymeric run in a gene's proximal part, and employs the transcriptional slippage mechanism for insertion-dependent reinstatement of the proper reading frame by the T7 RNA polymerase.
View Article and Find Full Text PDFRestriction-modification systems (R-M) are one of the antiviral defense tools used by bacteria, and those of the Type II family are composed of a restriction endonuclease (REase) and a DNA methyltransferase (MTase). Most entering DNA molecules are usually cleaved by the REase before they can be methylated by MTase, although the observed level of fragmented DNA may vary significantly. Using a model EcoRI R-M system, we report that the balance between DNA methylation and cleavage may be severely affected by transcriptional signals coming from outside the R-M operon.
View Article and Find Full Text PDFOne possible mechanism preventing phage infection of the bacterial cells is related to the presence of an effective restriction-modification system (R-M) which allows restriction of the invading DNA. However, there are some limitations to the absolute restriction of foreign DNA. Since there is a serious conflict between increase in the restriction-modification genes expression level and cell viability, we examined the antiviral effect of EcoRI restriction endonuclease after its translocation to the periplasmic space of the cell.
View Article and Find Full Text PDFBackground: The viral or host systems for a gene expression assume repeatability of the process and high quality of the protein product. Since level and fidelity of transcription primarily determines the overall efficiency, all factors contributing to their decrease should be identified and optimized. Among many observed processes, non-programmed insertion/deletion (indel) of nucleotide during transcription (slippage) occurring at homopolymeric A/T sequences within a gene can considerably impact its expression.
View Article and Find Full Text PDFBackground: Epimutations arising from transcriptional slippage seem to have more important role in regulating gene expression than earlier though. Since the level and the fidelity of transcription primarily determine the overall efficiency of gene expression, all factors contributing to their decrease should be identified and optimized.
Results: To examine the influence of A/T homopolymeric sequences on introduction of erroneous nucleotides by slippage mechanism green fluorescence protein (GFP) reporter was chosen.
DNA-dependent T7 RNA polymerase (T7 RNAP) is the most powerful tool for both gene expression and in vitro transcription. By using a Next Generation Sequencing (NGS) approach we have analyzed the polymorphism of a T7 RNAP-generated mRNA pool of the mboIIM2 gene. We find that the enzyme displays a relatively high level of template-dependent transcriptional infidelity.
View Article and Find Full Text PDFA type IIS restriction-modification (R-M) system SfaNI from Enterococcus faecalis NEB215 has been characterized. The sfaNIM gene was cloned by the methylase selection method. Methyltransferase SfaNI, a protein of 695 amino acids, consists of two domains responsible for different DNA-strand recognition and modification, and a putative DNA-binding HTH domain located in the N-terminal part of the protein.
View Article and Find Full Text PDFA flexible approach circumventing cloning problems related to incomplete vector double digest is described. DNA methyltransferase gene insertion into MCS of commonly used expression vectors facilitates identification of both: i) the correct linear fragment in agarose gels due to the dilator effect, and ii) recombinant colonies by size and opacity differences resulting from methyltransferase toxicity.
View Article and Find Full Text PDFAn improved method for gene deletion or replacement in Escherichia coli was developed. It employs a set of integrative vectors and two helper plasmids, as a temporary source of RecA and Flp activities. The integrative vectors combine several useful features including three different selection markers placed between two parallel oriented Flp recombinase target (FRT) sites.
View Article and Find Full Text PDFWe report the characterization of a small cryptic plasmid unlike any previously described from Moraxella bovis ATCC 10900, a Gram-negative bacterium belonging to the family Moraxellaceae. The complete nucleotide sequence of the plasmid pMbo4.6 was determined.
View Article and Find Full Text PDFThe contribution of a type II restriction-modification system (R-M system) to genome integrity and cell viability was investigated. We established experimental conditions which enabled the achievement of hemimethylated and unmethylated states for the specific bases of the recognition sequences of the host's DNA. To achieve this, we constructed the MboII R-M system containing only one (i.
View Article and Find Full Text PDFMethylation of a base in a specific DNA sequence protects the DNA from nucleolytic cleavage by restriction enzymes recognizing the same sequence. The MboII restriction-modification (R-M) system of Moraxella bovis ATCC 10900 consists of a restriction endonuclease gene and two methyltransferase genes. The enzymes encoded by this system recognize an asymmetrical sequence 5'-GAAGA-3'/3'-CTTCT-5'.
View Article and Find Full Text PDFThe methyltransferase M1.NcuI is a member of the restriction-modification system in Neisseria cuniculi ATCC14688 and recognizes the asymmetric pentanucleotide sequence 5'-GAAGA-3'/3'-CTTCT-5'. We purified M1.
View Article and Find Full Text PDFThe Cre/loxP recombination system of bacteriophage P1 is one of the most powerful tools in genome engineering. We report, however, that the activity of the Cre/loxP system interferes with the stability of the multicopy loxP-bearing plasmids in Escherichia coli recA bacteria. Due to the predominantly unidirectional Cre-mediated high-order multimer formation of these plasmids, the number of their copies (overall yield) gradually decreases.
View Article and Find Full Text PDF