Publications by authors named "Marian S Vogt"

GPN-loop GTPases have been found to be crucial for eukaryotic RNA polymerase II assembly and nuclear trafficking. Despite their ubiquitous occurrence in eukaryotes and archaea, the mechanism by which these GTPases mediate their function is unknown. Our study on an archaeal representative from showed that these dimeric GTPases undergo large-scale conformational changes upon GTP hydrolysis, which can be summarized as a lock-switch-rock mechanism.

View Article and Find Full Text PDF

CYTH proteins make up a large superfamily that is conserved in all three domains of life. These enzymes have a triphosphate tunnel metalloenzyme (TTM) fold, which typically results in phosphatase functions, e.g.

View Article and Find Full Text PDF

Selective adhesion of fungal cells to one another and to foreign surfaces is fundamental for the development of multicellular growth forms and the successful colonization of substrates and host organisms. Accordingly, fungi possess diverse cell wall-associated adhesins, mostly large glycoproteins, which present N-terminal adhesion domains at the cell surface for ligand recognition and binding. In order to function as robust adhesins, these glycoproteins must be covalently linkedto the cell wall via C-terminal glycosylphosphatidylinositol (GPI) anchors by transglycosylation.

View Article and Find Full Text PDF

In the crenarchaeon , the archaellum, a type-IV pilus like motility structure, is synthesized in response to nutrient starvation. Synthesis of components of the archaellum is controlled by the archaellum regulatory network (arn). Protein phosphorylation plays an important role in this regulatory network since the deletion of several genes encoding protein kinases and the phosphatase PP2A affected cell motility.

View Article and Find Full Text PDF

The correct distribution and trafficking of proteins are essential for all organisms. Eukaryotes evolved a sophisticated trafficking system which allows proteins to reach their destination within highly compartmentalized cells. One eukaryotic hallmark is the attachment of a glycosylphosphatidylinositol (GPI) anchor to C-terminal ω-peptides, which are used as a zip code to guide a subset of membrane-anchored proteins through the secretory pathway to the plasma membrane.

View Article and Find Full Text PDF

()-Benzylsuccinate is the characteristic initial intermediate of anaerobic toluene metabolism, which is formed by a radical-type addition of toluene to fumarate. Its further degradation proceeds by activation to the coenzyme A (CoA)-thioester and β-oxidation involving a specific ()-2-benzylsuccinyl-CoA dehydrogenase (BbsG) affiliated with the family of acyl-CoA dehydrogenases. In this report, we present the biochemical properties of electron transfer flavoproteins (ETFs) from the strictly anaerobic toluene-degrading species and and the facultatively anaerobic bacterium We determined the X-ray structure of the ETF paralogue involved in toluene metabolism of , revealing strong overall similarities to previously characterized ETF variants but significantly different structural properties in the hinge regions mediating conformational changes.

View Article and Find Full Text PDF

The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It is composed mainly of polysaccharides that are synthetized by protein complexes. At the cell wall level, enzyme activities are involved in postsynthesis polysaccharide modifications such as cleavage, elongation, branching, and cross-linking.

View Article and Find Full Text PDF

The small winged helix-turn-helix (wHTH) proteins of the Lrs14 family are major transcriptional regulators and act as archaeal biofilm regulators (AbfRs) in the crenarchaeote Sulfolobus acidocaldarius. Here, the first crystal structure of an AbfR ortholog, AbfR2, the deletion of which is known to impair biofilm formation, is presented. Like most other wHTH orthologs, AbfR2 is dimeric in solution as well as in its 2.

View Article and Find Full Text PDF

The nutritional alarmones ppGpp and pppGpp (collectively: (p)ppGpp) are nucleotide-based second messengers enabling bacteria to respond to environmental and stress conditions. Several bacterial species contain two highly homologous (p)ppGpp synthetases named RelP (SAS2, YwaC) and RelQ (SAS1, YjbM). It is established that RelQ forms homotetramers that are subject to positive allosteric regulation by pppGpp, but structural and mechanistic insights into RelP lack behind.

View Article and Find Full Text PDF