While interstrand crosslinks (ICLs) have been considered as one type of DNA damage in the past, there is mounting evidence suggesting that these highly cytotoxic lesions are processed differently by the cellular machinery depending upon the ICL structure. In this study, we examined the crosslinking ability of three mitomycins, the structure of the ICLs they produce and the cytotoxicity of the drugs toward three different cell lines. The drugs are: mitomycin C (1), decarbamoylmitomycin C (2), and a mitomycin-conjugate (3) whose mitosane moiety is linked to a N-methylpyrrole carboxamide.
View Article and Find Full Text PDFMitomycin C (MC) an antitumor drug and decarbamoylmitomycin C (DMC), a derivative of MC lacking the carbamoyl moiety, are DNA alkylating agents which can form DNA interstrand crosslinks (ICLs) between deoxyguanosine residues located on opposing DNA strands. MC forms primarily deoxyguanosine adducts with a 1"-R stereochemistry at the guanine-mitosene bond (1"-α, trans) whereas DMC forms mainly adducts with a 1"-S stereochemistry (1"-β, cis). The crosslinking reaction is diastereospecific: trans-crosslinks are formed exclusively at CpG sequences, while cis-crosslinks are formed only at GpC sequences.
View Article and Find Full Text PDF