Publications by authors named "Marian Nelson"

Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since World War I. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision.

View Article and Find Full Text PDF

Sulfur mustard (SM) is a lipid soluble alkylating agent that causes genotoxic injury. The eye is highly sensitive to SM toxicity and exposures exceeding 400 mg min/m can elicit irreversible corneal pathophysiologies. Development of medical countermeasures for ocular SM exposure has been hindered by a limited understanding of dose-dependent effects of SM on corneal injury.

View Article and Find Full Text PDF

Purpose: Ocular exposure to sulfur mustard (SM) vapor causes acute loss of corneal endothelial cells (CECs). Persistent corneal endothelial pathologies are observed in eyes that do not recover from SM exposure, suggesting that endothelial toxicity contributes to mustard gas keratopathy (MGK). Here, we evaluated the contributions of endothelial loss to acute and chronic corneal injuries in SM-exposed eyes.

View Article and Find Full Text PDF

The acute toxicity of organophosphorus-based compounds is primarily a result of acetylcholinesterase inhibition in the central and peripheral nervous systems. The resulting cholinergic crisis manifests as seizure, paralysis, respiratory failure and neurotoxicity. Though overstimulation of muscarinic receptors is the mechanistic basis of central organophosphorus (OP) toxicities, short-term changes in synapse physiology that precede OP-induced seizures have not been investigated in detail.

View Article and Find Full Text PDF

Corneal injuries resulting from ocular exposure to sulfur mustard (SM) vapor are the most prevalent chemical warfare injury. Ocular exposures exhibit three distinct, dose-dependent clinical trajectories: complete injury resolution, immediate transition to a chronic injury, or apparent recovery followed by the subsequent development of persistent ocular manifestations. These latter two trajectories include a constellation of corneal symptoms that are collectively known as mustard gas keratopathy (MGK).

View Article and Find Full Text PDF

Purpose: Sulfur mustard (SM) is a highly reactive vesicant that causes severe ocular injuries. Following exposure to moderate or high doses, a subset of victims develops a chronic injury known as mustard gas keratopathy (MGK) involving a keratitis of unknown etiopathogenesis with secondary keratopathies such as persistent epithelial lesions, corneal neovascularization, and progressive corneal degeneration. This study was designed to determine whether SM exposure evokes acute endothelial toxicity and to determine whether endothelial pathologies were specifically observed in MGK corneas as opposed to healed corneas.

View Article and Find Full Text PDF

Purpose: Sulfur mustard (SM) exposure results in dose-dependent morbidities caused by cytotoxicity and vesication. Although lesions resulting from ocular exposure often resolve clinically, an idiopathic delayed mustard gas keratopathy (MGK) can develop after a moderate or severe exposure. Sequelae include persistent keratitis, recurring epithelial lesions, corneal neovascularization, and corneal degeneration, which can lead to impaired vision or loss of sight.

View Article and Find Full Text PDF

Exposure of tissues to sulfur mustard (SM) results in the formation of protein and nucleotide adducts that disrupt cellular metabolism and cause cell death. Subsequent pathologies involve a significant proinflammatory response, disrupted healing, and long-term defects in tissue architecture. Following ocular exposure, acute corneal sequelae include epithelial erosions, necrosis, and corneal inflammation.

View Article and Find Full Text PDF

We compared the effects of overexpressing a tightly regulated anti-inflammatory cytokine, interleukin 10 (IL-10), and the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) on sulfur mustard induced cytotoxicity in human epidermal keratinocytes. Both cytokines were overexpressed when compared with the cells transfected with the empty vector as determined by quantitative ELISA. Cells overexpressing interleukin 10 suppressed the pro-inflammatory cytokines interleukin 8 and interleukin 6 following exposure to 50-300 microM sulfur mustard.

View Article and Find Full Text PDF

The regulatory effects of the active form of vitamin D, 1-alpha, 25-dihydroxyvitamin D3 (1-alpha, 25 (OH)2D3) were assessed on the cytokine and chemokine secretion induced by sulfur mustard on human skin fibroblasts and human epidermal keratinocytes. Stimulation of human skin fibroblasts with sulfur mustard (10(-4) M for 24 hr at 37 degrees ) resulted in approximately a 5 times increase in the secretion of interleukin-6 and over a 10 times increase for interleukin-8, which was inhibited by 1-alpha, 25 (OH)2D3, at View Article and Find Full Text PDF