Publications by authors named "Marian McCord"

Mosquito vector-borne diseases such as malaria and dengue pose a major threat to human health. Personal protection from mosquito blood feeding is mostly by treating clothing with insecticides and the use of repellents on clothing and skin. Here, we developed a low-voltage, mosquito-resistant cloth (MRC) that blocked all blood feeding across the textile and was flexible and breathable.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are developing a new mathematical model for creating mosquito-repelling fabrics that don’t use insecticides, addressing concerns about resistance and health risks linked to chemical treatments.
  • The model is based on mosquito behavior and characteristics and has been validated using different fabric types like woven filters and knitted textiles.
  • Prototype garments made from this model showed three times more resistance to mosquito bites compared to traditional insecticide-treated clothing, while also offering better comfort and thermal properties.
View Article and Find Full Text PDF

Mosquito-borne malaria kills 429,000 people each year with the problem being acute in sub-Saharan Africa. The successes gained with long-lasting pyrethroid-treated bednets are now in jeopardy because of wide-spread, pyrethroid resistance in mosquitoes. Using crowd modeling theory normalized for standard bednet architecture, we were able to design an attract-trap-kill technology for mosquitoes that does not require insecticides.

View Article and Find Full Text PDF

Malaria, dengue, yellow fever, and the Zika and West Nile Viruses are major vector-borne diseases of humans transmitted by mosquitoes. According to the World Health Organization, over 80% of the world's population is at risk of contacting these diseases. Insecticides are critical for mosquito control and disease prevention, and insect insecticide resistance is on the increase; new alternatives with potentially different modes of action from current chemistry are needed.

View Article and Find Full Text PDF

Malaria is the deadliest mosquito-borne disease and kills predominantly people in sub-Saharan Africa (SSA). The now widespread mosquito resistance to pyrethroids, with rapidly growing resistance to other insecticide classes recommended by the World Health Organization (WHO), may overturn the successes gained in mosquito control in recent years. It is of utmost importance to search for new, inexpensive, and safe alternatives, with new modes of action, that might improve the efficacy of current insecticides.

View Article and Find Full Text PDF

A hybrid poly(N-isopropylacrylamide) (PNIPAm)/cellulose nanofibrils (CNFs) hydrogel composite was fabricated by inverted stereolithography 3D printing to provide a new platform for regulating lower critical solution temperature (LCST) properties and thus tuning optical and bioadhesive properties. The phenomena of interest in the as-printed PNIPAm/CNF hydrogels may be attributed to the fiber-reinforced composite system between crosslinked PNIPAm and CNFs. The optical tunability was found to be correlated to the micro/nano structures of the PNIPAm/CNF hydrogel films.

View Article and Find Full Text PDF

A hybrid materials system to modulate lower critical solution temperature (LCST) and moisture content for thermo-responsivity and optical tunability was strategically developed by incorporating cellulose nanocrystals (CNCs) into a poly(N-isopropylacrylamide) (PNIPAm) hydrogel matrix. The PNIPAm/CNC hydrogel films exhibit tunable optical properties and wavelength bandpass selectivity as characterized by PROBE Spectroscopy and Dynamic Light Scattering (DLS). Importantly, the micro/nano structures of the PNIPAm/CNC hydrogel films were completely different when dried below and above the LCST.

View Article and Find Full Text PDF

Correspondence: Melanie S. Joy, PharmD, PhD, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Mail Stop C238, Room V20-4108, 12850 East Montview Blvd, Aurora, CO 80045. Email: Melanie.

View Article and Find Full Text PDF

Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip.

View Article and Find Full Text PDF

A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution.

View Article and Find Full Text PDF

The packaging and delivery of cells for cardiac regeneration has been explored using a variety biomaterials and delivery methods, but these studies often ignore one or more important design factors critical for rebuilding cardiac tissue. These include the biomaterial architecture, strength and stiffness, cell alignment, and/or incorporation of multiple cell types. In this article, we explore the combinatorial use of decellularized tissues, moldable hydrogels, patterned cell-seeding, and cell-sheet engineering and find that a combination of these methods is optimal in the recreation of transplantable cardiac-like tissue in vivo.

View Article and Find Full Text PDF

ZnO/Nylon 6 nanofiber mats were prepared by an electrospinning-electrospraying hybrid process in which ZnO nanoparticles were dispersed on the surface of Nylon 6 nanofibers without becoming completely embedded. The prepared ZnO/Nylon 6 nanofiber mats were evaluated for their abilities to kill bacteria or inhibit their growth and to catalytically detoxify chemicals. Results showed that these ZnO/Nylon 6 nanofiber mats had excellent antibacterial efficiency (99.

View Article and Find Full Text PDF

The standard treatment for severe traumatic injury is frequently compression and application of gauze dressing to the site of hemorrhage. However, while able to rapidly absorb pools of shed blood, gauze fails to provide strong surface (topical) hemostasis. The result can be excess hemorrhage-related morbidity and mortality.

View Article and Find Full Text PDF