Publications by authors named "Marian Manciu"

In this study, we demonstrate that Raman microscopy combined with computational analysis is a useful approach to discriminating accurately between brain tumor bio-specimens and to identifying structural changes in glioblastoma (GBM) bio-signatures after nordihydroguaiaretic acid (NDGA) administration. NDGA phenolic lignan was selected as a potential therapeutic agent because of its reported beneficial effects in alleviating and inhibiting the formation of multi-organ malignant tumors. The current analysis of NDGA's impact on GBM human cells demonstrates a reduction in the quantity of altered protein content and of reactive oxygen species (ROS)-damaged phenylalanine; results that correlate with the ROS scavenger and anti-oxidant properties of NDGA.

View Article and Find Full Text PDF

Metronomic chemotherapy has shown promising antitumor activity in a number of malignancies. We previously reported a phase II clinical trial of metronomic UFT (a 5-fluorouracil prodrug; 100 mg/twice per day p.o.

View Article and Find Full Text PDF

Accurate clinical evaluation of renal osteodystrophy (ROD) is currently accomplished using invasive in vivo transiliac bone biopsy, followed by in vitro histomorphometry. In this study, we demonstrate that an alternative method for ROD assessment is through a fast, label-free Raman recording of multiple biomarkers combined with computational analysis for predicting the minimally required number of spectra for sample classification at defined accuracies. Four clinically relevant biomarkers: the mineral-to-matrix ratio, the carbonate-to-matrix ratio, phenylalanine, and calcium contents were experimentally determined and simultaneously considered as input to a linear discriminant analysis (LDA).

View Article and Find Full Text PDF

With the goal of accurately detecting and quantifying the amounts of dopamine (DA) and serotonin (5-HT) in mixtures of these neurotransmitters without using any labelling, we present a detailed, comparative computational and Raman experimental study. Although discrimination between these two analytes is achievable in such mixtures for concentrations in the millimolar range, their accurate quantification remains unattainable. As shown for the first time in this work, the formation of a new composite resulting from their interactions with each other is the main reason for this lack of quantification.

View Article and Find Full Text PDF

Aim: To construct classification scores based on a combination of cancer patient plasma biomarker levels, for predicting progression-free survival.

Methods: The approach is based on the optimization of the biomarker cut-off values, which maximize the statistical differences between the groups with values lower or larger than the cut-offs, respectively. An intuitive visualization of the quality of the classification score is also proposed.

View Article and Find Full Text PDF

Defining the pathogenesis of renal osteodystrophy (ROD) and its treatment efficacy are difficult, since many factors potentially affect bone quality. In this study, confocal Raman microscopy and parallel statistical analysis were used to identify differences in bone composition between healthy and ROD bone tissues through direct visualization of three main compositional parametric ratios, namely, calcium content, mineral-to-matrix, and carbonate-to-matrix. Besides the substantially lower values found in ROD specimens for these representative ratios, an obvious accumulation of phenylalanine is Raman spectroscopically observed for the first time in ROD samples and reported here.

View Article and Find Full Text PDF

Objectives: To assess the inter-rater reliability of standardized patients (SPs) as they assess the clinical skills of medical students and to detect possible rating bias in SPs.

Methods: The ratings received by 6 students examined in 4 clinical stations by 13 SPs were examined. Each SP contributed at least 3 and at most 10 pairwise ratings, with an average of approximately 5 ratings per SP.

View Article and Find Full Text PDF

Background: Although there are reports that metronomic cyclophosphamide (CTX) can be immune stimulating, the impact of its combination with anti-CTLA-4 immunotherapy for the treatment of cancer remains to be evaluated.

Methods: Murine EMT-6/P breast cancer, or its cisplatin or CTX-resistant variants, or CT-26 colon, were implanted into Balb/c mice. Established tumours were monitored for relative growth following treatment with anti-CTLA-4 antibody alone or in combination with; (a) metronomic CTX (ldCTX; 20 mg kg day), b) bolus (150 mg kg) plus ldCTX, or (c) sequential treatment with gemcitabine (160 mg kg every 3 days).

View Article and Find Full Text PDF

Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components.

View Article and Find Full Text PDF

The distribution of ions in the vicinity of the air/water interface is still a matter of strong debate, with numerous calculations and experiments providing contradictory results, even regarding the preference of simple ions (such as H and OH) for interfacial or bulk water. When short range interactions between ions and the interface are assumed independent of bulk concentrations, if they are compatible with the surface tension data, they underpredict the experimental Zeta potentials by orders of magnitude. If they are compatible with Zeta potential data, they are in strong disagreement with surface tension experiments.

View Article and Find Full Text PDF

Boron-doped diamond (BDD) has seen a substantial increase in interest for use as electrode coating material for electrochemistry and studies of deep brain stimulation mechanism. In this study, we present an alternative method for determining important characteristics, including conductivity, carrier concentration, and time constant, of such material by the signature of Drude-like metallic behavior in the far-infrared (IR) spectral range. Unlike the direct determination of conductivity from the four-point probe method, using far-IR transmittance provides additional information, such as whether the incorporation of boron results in a large concentration of carriers or in inducing defects in the diamond lattice.

View Article and Find Full Text PDF

The partition function of a grafted polymer brush was calculated as a sum over all possible configurations, each of them being an ensemble of n1, n2, ...

View Article and Find Full Text PDF

The structure of grafted adsorbing polymers on surfaces is described as a statistical ensemble of loops generated by an one-dimensional random walk perpendicular to the surface. The configuration of each chain is considered as a succession of closed loops ended by an open loop (a tail). The probability of formation of each individual loop is the product between the probability of first return to the surface and a Boltzmann factor containing the free energy of the Flory-Huggins kind, which is approximated by the minimum free energy of all possible configurations of that loop.

View Article and Find Full Text PDF

Megavoltage X-ray sources are commonly used for therapy planning, and knowledge of their spectral distribution is important for accurate dose calculations. There are many methods that could provide reasonable estimations of Megavoltage X-ray spectra, when very accurate attenuation data or at least very good set of initial guesses of the spectra are available. We present here a novel method, which can be used for accurate Megavoltage spectral reconstruction without any prior knowledge of spectral distribution; the method performs well even when the available transmission data are affected by noise.

View Article and Find Full Text PDF

It was recently suggested that the swelling of neutral multilipid bilayers upon addition of a salt can be simply explained only by the electrolyte screening of the van der Waals attractions, while assuming that the hydration force and the repulsion due to thermal undulations of membranes are unaffected by the salt. While we agree that the screening of the van der Waals interactions plays a role, we suggest that the increase in the hydration force upon addition of a salt has also to be taken into account. In a statistical model, which accounts for the membrane undulations, parameters could be found to explain the multibilayer swelling even when the van der Waals attraction is considered unaffected by the electrolyte screening.

View Article and Find Full Text PDF
Ions at the air/water interface.

J Colloid Interface Sci

December 2006

In a recent review of this topic [B.C. Garett, Science 303 (2004) 1146] the emphasis was on some recent experiments, in which it was found that some anions accumulate at the air/water interface and not in the bulk, as usually happens to the cations, and on some simulations which explained those positive surface adsorption excesses.

View Article and Find Full Text PDF

The main goal of this paper is to review the theoretical models which can be used to describe the interactions between silica surfaces and to show that a model proposed earlier by the authors (the polarization model), which accounts concomitantly for double layer and hydration forces, can be adapted to explain recent experiments in this direction. When the water molecules near the interface were considered to have an ice-like structure, a strong coupling between the double layer and hydration forces (described by the correlation length between neighboring dipoles, lambda(m)) generates long range interactions, larger than the experimentally determined interactions between silica surfaces. Arguments are brought that a gel layer is likely to be formed on the surface of silica, which, by generating disorder in the interfacial water layers, can decrease strongly the value of lambda(m).

View Article and Find Full Text PDF

A model for the electrostatic interactions in water in the vicinity of a surface is suggested, which accounts, within the Poisson-Boltzmann mean field approach, for the screening of the charges and for the coupling interactions between neighboring dipoles. When the water molecules near a solid surface are assumed to be organized in icelike layers, the polarization is not a continuous function but exists only at the discrete positions of the water molecules. The particular positions of the water molecules in the icelike structure govern the manner in which the average water dipoles align with each other.

View Article and Find Full Text PDF

In the vicinity of a charged interface, the Poisson-Boltzmann approach considers that the ions obey Boltzmann distributions in a mean electrical field that satisfies the Poisson equation. However, the boundary between two dielectrics generates additional interactions between ions and the interface. The traditional models of ion hydration interactions, that assume that water is a homogeneous dielectric, predict that these interactions are repulsive for all kinds of ions, since all ions should prefer the medium with a larger dielectric constant, where they are better hydrated.

View Article and Find Full Text PDF

Recent experiments on restabilization of protein-covered latex colloids at high ionic strengths reported by Lopez-Leon et al.(1) revealed strong specific anion effects. The same authors also emphasized that a recent polarization model, which involves both hydration and double layer forces, can account only for some of their experimental results but are in disagreement with other experimental results.

View Article and Find Full Text PDF

The interactions between hydrophilic surfaces in water cannot be always explained on the basis of the traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and an additional repulsion, the "hydration force" is required to accommodate the experimental data. While this force is in general associated with the organization of water in the vicinity of the surface, different models for the hydration were typically required to explain different experiments. In this article, it is shown that the polarization-model for the double layer/hydration proposed by the authors can explain both (i) the repulsion between neutral lipid bilayers, with a short decay length ( approximately 2 A), which is almost independent of the electrolyte concentration, and, at the same time, (ii) the repulsion between weakly charged mica surfaces, with a longer decay length ( approximately 10 A), exhibiting not only a dependence on the ionic strength, but also strong ion-specific effects.

View Article and Find Full Text PDF

Most of the modern theories of grafted polyelectrolyte brushes are valid only for moderate stretching of the polyelectrolyte. However, particularly at low ionic strength and high grafting densities, even a moderate charge of the polyelectrolyte can generate a strong stretching. A simple mean field model for strongly stretched grafted polyelectrolyte brushes is suggested, based on an approximate calculation of the partition function of a polyelectrolyte chain.

View Article and Find Full Text PDF

The first theories of grafted polymer brushes assumed a step profile for the monomer density. Later, the real density profile was obtained from Monte Carlo or molecular dynamics simulations and calculated numerically using a self-consistent field theory. The analytical approximations of the solutions of the self-consistent field equations provided a parabolic dependence of the self-consistent field, which in turn led to a parabolic distribution for the monomer density in neutral brushes.

View Article and Find Full Text PDF

A simple modified Poisson-Boltzmann formalism, which accounts also for those interactions between electrolyte ions and colloidal particles not included in the mean potential, is used to calculate the force between two parallel plates. It is shown that the short-range interactions between ions and plates, such as those due to the change in the hydration free energy of a structure-making/breaking ion that approaches the interface, affect the double layer interaction at large separations through the modification of the surface potential and surface charge density. While at short separations (below the range of the short-range ion-hydration forces) the interaction can be attractive, at larger separations the interaction is always repulsive, as in the traditional theory.

View Article and Find Full Text PDF

A simple modality is suggested to include, in the framework of a modified Poisson-Boltzmann approach, specific ion effects via the change in the ion hydration between the bulk and the vicinity of the surface. This approach can account for both the depletion of the interfacial region of structure-making ions as well as for the accumulation of structure-breaking ions near the interface. Expressions for the change in interfacial tension as a function of electrolyte concentrations are derived.

View Article and Find Full Text PDF