Cellulose is an abundant natural polymer and is thus promising for enforcing biobased plastics. A broader application of cellulose fibers as a filler in polymer composites is limited because of their hydrophilicity and hygroscopicity. The recent scientific literature on plasma methods for the hydrophobization of cellulose materials is reviewed and critically evaluated.
View Article and Find Full Text PDFThis study involved the creation of highly porous PLA scaffolds through the porogen/leaching method, utilizing polyethylene glycol as a porogen with a 75% mass ratio. The outcome achieved a highly interconnected porous structure with a thickness of 25 μm. To activate the scaffold's surface and improve its hydrophilicity, radiofrequency (RF) air plasma treatment was employed.
View Article and Find Full Text PDFPoly(2-oxazoline) is a promising new class of polymeric materials due to their antibiofouling properties and good biocompatibility. Poly(2-oxazoline) coatings can be deposited on different substrates via plasma polymerization, which can be more advantageous than other coating methods. The aim of this study is to deposit poly(2-oxazoline) coatings using a surface dielectric barrier discharge burning in nitrogen at atmospheric pressure using 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline vapours as monomers and compare the film properties.
View Article and Find Full Text PDFIn this study, furcellaran (FUR) obtained from Furcellaria lumbricalis was firstly employed for sulfation via various methods, including SO-pyridine (SO∙Py) complex in different aprotic solvents, chlorosulfonic acid and sulfuric acid with a "coupling" reagent N,N'-Dicyclohexylcarbodiimide. Structural characterization through FT-IR, GPC, XPS and elemental analyses confirmed the successful synthesis of 6-O-sulfated FUR derivates characterized by varying degrees of sulfation (DS) ranging from 0.15 to 0.
View Article and Find Full Text PDFAntibacterial coatings on biomedical instruments are of great interest because they can suppress bacterial colonization on these instruments. In this study, antibacterial polymeric thin coatings were deposited on teflon substrates using atmospheric pressure plasma polymerization from a propane-butane mixture. The plasma polymerization was performed by means of surface dielectric barrier discharge burning in nitrogen at atmospheric pressure.
View Article and Find Full Text PDFMore than half of the hospital-associated infections worldwide are related to the adhesion of bacteria cells to biomedical devices and implants. To prevent these infections, it is crucial to modify biomaterial surfaces to develop the antibacterial property. In this study, chitosan (CS) and chondroitin sulfate (ChS) were chosen as antibacterial coating materials on polylactic acid (PLA) surfaces.
View Article and Find Full Text PDFA green, nature-friendly synthesis of polyaniline colloidal particles based on enzyme-assisted oxidation of aniline with horseradish peroxidase and chitosan or poly(vinyl alcohol) as steric stabilizers was successfully employed. Physicochemical characterization revealed formation of particles containing the polyaniline emeraldine salt and demonstrated only a minor effect of polymer stabilizers on particle morphology. All tested colloidal particles showed antioxidation activity determined via scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals.
View Article and Find Full Text PDFSurface coatings of materials by polysaccharide polymers are an acknowledged strategy to modulate interfacial biocompatibility. Polysaccharides from various algal species represent an attractive source of structurally diverse compounds that have found application in the biomedical field. Furcellaran obtained from the red algae is a potential candidate for biomedical applications due to its gelation properties and mechanical strength.
View Article and Find Full Text PDFHydrophobic fibrous slippery liquid-infused porous surfaces (SLIPS) were fabricated by electrospinning polydimethylsiloxane (PDMS) and polystyrene (PS) as a carrier polymer on plasma-treated polyethylene (PE) and polyurethane (PU) substrates. Subsequent infusion of blackseed oil (BSO) into the porous structures was applied for the preparation of the SLIPS. SLIPS with infused lubricants can act as a repellency layer and play an important role in the prevention of biofilm formation.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
July 2021
In transdermal drug delivery applications uniform drug distribution and sustained release are of great importance to decrease the side effects. In this direction in the present research, vanillin crosslinked chitosan (CS) and polyvinyl alcohol (PVA) blend based matrix-type transdermal system was prepared by casting and drying of aqueous solutions for local delivery of enrofloxacin (ENR) drug. Subsequently, the properties including the morphology, chemical structure, thermal behavior, tensile strength, crosslinking degree, weight uniformity, thickness, swelling and drug release of the CS-PVA blend films before and after crosslinking were characterized.
View Article and Find Full Text PDFThe development of antibacterial materials has great importance in avoiding bacterial contamination and the risk of infection for implantable biomaterials. An antibacterial thin film coating on the surface via chemical bonding is a promising technique to keep native bulk material properties unchanged. However, most of the polymeric materials are chemically inert and highly hydrophobic, which makes chemical agent coating challenging Herein, immobilization of chlorhexidine, a broad-spectrum bactericidal cationic compound, onto the polylactic acid surface was performed in a multistep physicochemical method.
View Article and Find Full Text PDFMany polymer materials have found a wide variety of applications in biomedical industries due to their excellent mechanical properties. However, the infections associated with the biofilm formation represent serious problems resulting from the initial bacterial attachment on the polymeric surface. The development of novel slippery liquid-infused porous surfaces (SLIPSs) represents promising method for the biofilm formation prevention.
View Article and Find Full Text PDFThe active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells.
View Article and Find Full Text PDFNovel composite films combining biocompatible polysaccharides with conducting polyaniline (PANI) were prepared via the in-situ polymerization of aniline hydrochloride in the presence of sodium hyaluronate (SH) or chitosan (CH). The composite films possess very good cytocompatibility in terms of adhesion and proliferation of two lines of human induced pluripotent stem cells (hiPSC). Moreover, the cardiomyogenesis and even formation of beating clusters were successfully induced on the films.
View Article and Find Full Text PDFPolyoxazoline thin coatings were deposited on glass substrates using atmospheric pressure plasma polymerization from 2-ethyl-2-oxazoline vapours. The plasma polymerization was performed in dielectric barrier discharge burning in nitrogen at atmospheric pressure. The thin films stable in aqueous environments were obtained at the deposition with increased substrate temperature, which was changed from 20 ∘C to 150 ∘C.
View Article and Find Full Text PDFPoly(ethylene oxide) (PEO)-like thin films were successfully prepared by plasma-assisted vapor thermal deposition (PAVTD). PEO powders with a molar weight (Mw) between 1500 g/mol and 600,000 g/mol were used as bulk precursors. The effect of Mw on the structural and surface properties was analyzed for PEO films prepared at a lower plasma power.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2020
Conducting polymers (CP) can be used as pH- and/or electro-responsive components in various bioapplications, for example, in 4D smart scaffolds. The ability of CP to maintain conductivity under physiological conditions is, therefore, their crucial property. Unfortunately, the conductivity of the CP rapidly decreases in physiological environment, as their conducting salts convert to non-conducting bases.
View Article and Find Full Text PDFPolymer biointerfaces are considered suitable materials for the improvement and development of numerous applications [...
View Article and Find Full Text PDFResearch in cell adhesion has important implications in various areas, such as food processing, medicine, environmental engineering, biotechnological processes. Cell surface characterization and immobilization of microorganisms on solid surfaces can be performed by promoting cell adhesion, in a relatively simple, inexpensive, and quick manner. The adhesion of IMUFRJ 50682 to different surfaces, especially potential residual plastics (polystyrene, poly(ethylene terephthalate), and poly(tetrafluoroethylene)), and its use as an immobilized biocatalyst were tested.
View Article and Find Full Text PDFPolyoxazolines are a new promising class of polymers for biomedical applications. Antibiofouling polyoxazoline coatings can suppress bacterial colonization of medical devices, which can cause infections to patients. However, the creation of oxazoline-based films using conventional methods is difficult.
View Article and Find Full Text PDFHemocompatibility is an essential prerequisite for the application of materials in the field of biomedicine and biosensing. In addition, mixed ionic and electronic conductivity of conducting polymers is an advantageous property for these applications. Heparin-like materials containing sulfate, sulfamic, and carboxylic groups may have an anticoagulation effect.
View Article and Find Full Text PDFThe use of polymers in all aspects of daily life is increasing considerably, so there is high demand for polymers with specific properties. Polymers with antibacterial properties are highly needed in the food and medical industries. Low-density polyethylene (LDPE) is widely used in various industries, especially in food packaging, because it has suitable mechanical and safety properties.
View Article and Find Full Text PDFThe cytocompatibility of cardiomyocytes derived from embryonic stem cells and neural progenitors, which were seeded on the surface of composite films made of graphene oxide (GO) and polypyrrole (PPy-GO) or poly(3,4-ethylenedioxythiophene) (PEDOT-GO) are reported. The GO incorporated in the composite matrix contributes to the patterning of the composite surface, while the electrically conducting PPy and PEDOT serve as ion-to-electron transducers facilitating electrical stimulation/sensing. The films were fabricated by a simple one-step electropolymerization procedure on electrically conducting indium tin oxide (ITO) and graphene paper (GP) substrates.
View Article and Find Full Text PDF