A pathogen inactivation step during collection or processing of clinical samples has the potential to reduce infectious risks associated with diagnostic procedures. It is essential that these inactivation methods are demonstrated to be effective, particularly for non-traditional inactivation reagents or for commercial products where the chemical composition is undisclosed. This study assessed inactivation effectiveness of twenty-four next-generation (guanidine-free) nucleic acid extraction lysis buffers and twelve rapid antigen test buffers against SARS-CoV-2, the causative agent of COVID-19.
View Article and Find Full Text PDFThe COVID-19 pandemic has necessitated a multifaceted rapid response by the scientific community, bringing researchers, health officials, and industry together to address the ongoing public health emergency. To meet this challenge, participants need an informed approach for working safely with the etiological agent, the novel human coronavirus SARS-CoV-2. Work with infectious SARS-CoV-2 is currently restricted to high-containment laboratories, but material can be handled at a lower containment level after inactivation.
View Article and Find Full Text PDFThe molecular processes that determine the outcome of influenza virus infection in humans are multifactorial and involve a complex interplay between host, viral and bacterial factors. However, it is generally accepted that a strong innate immune dysregulation known as 'cytokine storm' contributes to the pathology of infections with the 1918 H1N1 pandemic or the highly pathogenic avian influenza viruses of the H5N1 subtype. The RNA sensor retinoic acid-inducible gene I (RIG-I) plays an important role in sensing viral infection and initiating a signalling cascade that leads to interferon expression.
View Article and Find Full Text PDFThe host interferon (IFN) response represents one of the first barriers that influenza viruses must surmount in order to establish an infection. Many advances have been made in recent years in understanding the interactions between influenza viruses and the interferon system. In this review, we summarise recent work regarding activation of the type I IFN response by influenza viruses, including attempts to identify the viral RNA responsible for IFN induction, the stage of the virus life cycle at which it is generated and the role of defective viruses in this process.
View Article and Find Full Text PDFThe NS1 protein of influenza A viruses is the dedicated viral interferon (IFN)-antagonist. Viruses lacking NS1 protein expression cannot multiply in normal cells but are viable in cells deficient in their ability to produce or respond to IFN. Here we report an unbiased mutagenesis approach to identify positions in the influenza A NS1 protein that modulate the IFN response upon infection.
View Article and Find Full Text PDFUnlabelled: Influenza A viruses counteract the cellular innate immune response at several steps, including blocking RIG I-dependent activation of interferon (IFN) transcription, interferon (IFN)-dependent upregulation of IFN-stimulated genes (ISGs), and the activity of various ISG products; the multifunctional NS1 protein is responsible for most of these activities. To determine the importance of other viral genes in the interplay between the virus and the host IFN response, we characterized populations and selected mutants of wild-type viruses selected by passage through non-IFN-responsive cells. We reasoned that, by allowing replication to occur in the absence of the selection pressure exerted by IFN, the virus could mutate at positions that would normally be restricted and could thus find new optimal sequence solutions.
View Article and Find Full Text PDFUnlabelled: We have examined the requirements for virus transcription and replication and thus the roles of input and progeny genomes in the generation of interferon (IFN)-inducing pathogen-associated molecular patterns (PAMPs) by influenza A viruses using inhibitors of these processes. Using IFN regulatory factor 3 (IRF3) phosphorylation as a marker of activation of the IFN induction cascade that occurs upstream of the IFN-β promoter, we demonstrate strong activation of the IFN induction cascade in A549 cells infected with a variety of influenza A viruses in the presence of cycloheximide or nucleoprotein (NP) small interfering RNA (siRNA), which inhibits viral protein synthesis and thus complementary ribonucleoprotein (cRNP) and progeny viral RNP (vRNP) synthesis. In contrast, activation of the IFN induction cascade by influenza viruses was very effectively abrogated by treatment with actinomycin D and other transcription inhibitors, which correlated with the inhibition of the synthesis of all viral RNA species.
View Article and Find Full Text PDFThe induction of an interferon-induced antiviral state is a powerful cellular response against viral infection that limits viral spread. Here, we show that a preexisting antiviral state inhibits the replication of influenza A viruses in human A549 cells by preventing transport of the viral genome to the nucleus and that the interferon-induced MxA protein is necessary but not sufficient for this process. This represents a previously unreported antiviral function of MxA against influenza A virus infection.
View Article and Find Full Text PDFSeasonal epidemics and periodic worldwide pandemics caused by influenza A viruses are of continuous concern. The viral nonstructural (NS1) protein is a multifunctional virulence factor that antagonizes several host innate immune defenses during infection. NS1 also directly stimulates class IA phosphoinositide 3-kinase (PI3K) signaling, an essential cell survival pathway commonly mutated in human cancers.
View Article and Find Full Text PDFA panel of influenza A viruses encoding mutant NS1 proteins was created in which a number of NS1 functions, including interactions with dsRNA, PI3K, CPSF30 and PKR, were inhibited. Surprisingly, given previous reports that NS1 activates PI3K to prevent apoptosis, the mutant viruses rUd-Y89F and rUd-P164/7A that fail to activate PI3K did not induce any more apoptosis than wild-type virus in MRC-5 and A549 cells, even though these cells are highly sensitive to inducers of apoptosis. Induction of cell death by the apoptogenic rUd-184-8(P) virus could not be prevented by serum-mediated activation of PI3K/Akt.
View Article and Find Full Text PDF