Publications by authors named "Marian Dryzhakov"

Article Synopsis
  • The paper enhances the junction tree variational autoencoder (JT VAE) by improving its implementation and utilizing its internal feature space for various tasks.
  • It demonstrates that pretraining the JT VAE on a large dataset, specifically the ZINC database, and subsequent optimization with a regression model allows for multitasking capabilities like prediction, generation, and optimization.
  • The study evaluates the model using the QM9 dataset, showing that it outperforms existing models in generating new molecules and optimizing molecular properties while maintaining high precision.
View Article and Find Full Text PDF

Nitro compounds are known to change reaction rates and kinetic concentration dependence of Brønsted-acid-catalyzed reactions. Yet, no mechanistic model exists to account for these observations. In this work, an atomistic model for the catalytically active form for an alcohol dehydroazidation reaction is presented, which is generated by DFT calculations and consists of an H-bonded aggregate of two molecules of Brønsted acid and two molecules of nitro compound.

View Article and Find Full Text PDF

The ground-state deprotection of a simple alkynylsilane is studied under vibrational strong coupling to the zero-point fluctuations, or vacuum electromagnetic field, of a resonant IR microfluidic cavity. The reaction rate decreased by a factor of up to 5.5 when the Si-C vibrational stretching modes of the reactant were strongly coupled.

View Article and Find Full Text PDF

A cocatalytic effect of nitro compounds is described for the B(C6F5)3·H2O catalyzed azidation of tertiary aliphatic alcohols, enabling catalyst turnover for the first time and with a broad range of substrates. Kinetic investigations into this surprising effect reveal that nitro compounds induce a switch from first order concentration dependence in Brønsted acid to second order concentration dependence in Brønsted acid and second order dependence in the nitro compounds. Kinetic, electronic, and spectroscopic evidence suggests that higher order hydrogen-bonded aggregates of nitro compounds and acids are the kinetically competent Brønsted acid catalysts.

View Article and Find Full Text PDF

The inability to decouple Lewis acid catalysis from undesirable Brønsted acid catalysed side reactions when water or other protic functional groups are necessarily present has forced chemists to choose between powerful but harsh catalysts or poor but mild ones, a dichotomy that restricts the substrate scope of dehydrative transformations such as the direct SN1 reaction of alcohols. A systematic survey of Lewis and Brønsted acids reveals that the strong non-hydrolyzable Lewis acid B(C6F5)3 leads to highly chemoselective alcohol substitution in the presence of acid-sensitive alkenes, protecting groups and other functional groups without the typical compromise in reaction rates, substrate scope and catalyst loading.

View Article and Find Full Text PDF