Autoimmune diseases are broadly characterized as a failure in immune tolerance. In multiple sclerosis (MS), autoreactive immune cells attack the protective myelin sheath lining neurons in the central nervous system. Therapeutic strategies that selectively and durably restore immune tolerance without broad immunosuppression are urgently needed for MS.
View Article and Find Full Text PDFDesigning targeted drug delivery systems to effectively treat bone diseases ranging from osteoporosis to nonunion bone defects remains a significant challenge. Previously, nanoparticles (NPs) self-assembled from diblock copolymers of poly(styrene--maleic anhydride)--poly(styrene) (PSMA--PS) delivering a Wnt agonist were shown to effectively target bone and improve healing via the introduction of a peptide with high affinity to tartrate-resistant acid phosphatase (TRAP), an enzyme deposited by the osteoclasts during bone remodeling. Despite these promising results, the underlying biological factors governing targeting and subsequent drug delivery system (DDS) design parameters have not been examined to enable the rational design to improve bone selectivity.
View Article and Find Full Text PDFDisease modifying drugs and biologics used to treat autoimmune diseases, although promising, are non-curative. As the field moves towards development of new approaches to treat autoimmune disease, antigen-specific therapies immunotherapies (ASITs) have emerged. Despite clinical approval of ASITs for allergies, clinical trials using soluble ASITs for autoimmunity have been largely unsuccessful.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an autoimmune disease that develops when dysfunctional autoreactive lymphocytes attack the myelin sheath in the central nervous system. There are no cures for MS, and existing treatments are associated with unwanted side effects. One approach for treating MS is presenting distinct immune signals (i.
View Article and Find Full Text PDFAntigen-specific tolerance is a key goal of experimental immunotherapies for autoimmune disease and allograft rejection. This outcome could selectively inhibit detrimental inflammatory immune responses without compromising functional protective immunity. A major challenge facing antigen-specific immunotherapies is ineffective control over immune signal targeting and integration, limiting efficacy and causing systemic non-specific suppression.
View Article and Find Full Text PDFMicheliolide (MCL) is a naturally occurring sesquiterpene lactone that selectively targets leukemic stem cells (LSCs), which persist after conventional chemotherapy for myeloid leukemias, leading to disease relapse. To overcome modest MCL cytotoxicity, analogs with ≈two-threefold greater cytotoxicity against LSCs are synthesized via late-stage chemoenzymatic C-H functionalization. To enhance bone marrow delivery, MCL analogs are entrapped within bone-targeted polymeric nanoparticles (NPs).
View Article and Find Full Text PDFDespite widespread use of conventional diagnostic methods in orthopaedic applications, limitations still exist in detection and diagnosing many pathologies especially at early stages when intervention is most critical. The use of biomaterials to develop diagnostics and theranostics, including nanoparticles and scaffolds for systemic or local applications, has significant promise to address these shortcomings and enable successful clinical translation. These developments in both modular and holistic design of diagnostic and theranostic biomaterials may improve patient treatments for myriad orthopaedic applications ranging from cancer to fractures to infection.
View Article and Find Full Text PDFDespite efforts to achieve tissue selectivity, the majority of systemically administered drug delivery systems (DDSs) are cleared by the mononuclear phagocyte system (MPS) before reaching target tissues regardless of disease or injury pathology. Previously, we showed that while tartrate-resistant acid phosphatase (TRAP) binding peptide (TBP)-targeted polymeric nanoparticles (TBP-NP) delivering a bone regenerative Wnt agonist improved NP fracture accumulation and expedited healing compared with controls, there was also significant MPS accumulation. Here we show that TBP-NPs are taken up by liver, spleen, lung, and bone marrow macrophages (Mϕ), with 76 ± 4%, 49 ± 11%, 27 ± 9%, and 92 ± 5% of tissue-specific Mϕ positive for NP, respectively.
View Article and Find Full Text PDFLeukemias are challenging diseases to treat due, in part, to interactions between leukemia cells and the bone marrow microenvironment (BMME) that contribute significantly to disease progression. Studies have shown that leukemic cells secrete C-chemokine (C-C motif) ligand 3 (CCL3), to disrupt the BMME resulting in loss of hematopoiesis and support of leukemic cell survival and proliferation. In this study, a murine model of blast crisis chronic myelogenous leukemia (bcCML) that expresses the translocation products BCR/ABL and Nup98/HoxA9 was used to determine the role of CCL3 in BMME regulation.
View Article and Find Full Text PDFThe newest generation of drug delivery systems (DDSs) exploits ligands to mediate specific targeting of cells and/or tissues. However, studies investigating the link between ligand density and nanoparticle (NP) uptake are limited to a small number of ligand-receptor systems. C-type lectin-like molecule-1 (CLL1) is uniquely expressed on myeloid cells, which enables the development of receptors specifically targeting treat various diseases.
View Article and Find Full Text PDFDespite several decades of progress, bone-specific drug delivery is still a major challenge. Current bone-acting drugs require high-dose systemic administration which decreases therapeutic efficacy and increases off-target tissue effects. Here, a bone-targeted nanoparticle (NP) delivery system for a β-catenin agonist, 3-amino-6-(4-((4-methylpiperazin-1-yl)sulfonyl)phenyl)-N-(pyridin-3-yl)pyrazine-2-carboxamide, a glycogen synthase kinase 3 beta (GSK-3β) inhibitor, was developed to enhance fracture healing.
View Article and Find Full Text PDFSuperparamagnetic iron oxide nanoparticles have recently been developed as T2 contrast agents for magnetic resonance imaging. Here we report the dependence of the phase relaxivity, r2, on the particle shape. We show that the size dependence of the relaxivity for spherical particles can be generalized to spheroidal particles.
View Article and Find Full Text PDF