A multi-modal mass spectrometry imaging (MSI) and profiling approach has been applied to assess the partitioning of the anti-TB fluoroquinolone levofloxacin into pulmonary lesions. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and a commercial liquid microjunction surface sampling technology (LMJ-SSP), or flowprobe, have been used to both spatially profile and image drug distributions in lung tissue sections from TB-infected rabbits following oral administration of a single human-equivalent dose. Levofloxacin levels were highest at 6 h post-dose in normal lung, cellular granuloma, and necrotic caseum compartments.
View Article and Find Full Text PDFMicroorganisms such as bacteria and fungi produce a variety of specialized metabolites that are invaluable for agriculture, biological research, and drug discovery. However, the screening of microbial metabolic output is usually a time-intensive task. Here, we utilize a liquid microjunction surface sampling probe for electrospray ionization-mass spectrometry to extract and ionize metabolite mixtures directly from living microbial colonies grown on soft nutrient agar in Petri-dishes without any sample pretreatment.
View Article and Find Full Text PDFA coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation.
View Article and Find Full Text PDFThe recently discovered sample plug formation and injection operational mode of a continuous flow, coaxial tube geometry, liquid microjunction surface sampling probe (LMJ-SSP) was further characterized and applied for concentration and mixing of analyte extracted from multiple areas on a surface and for nanoliter-scale chemical reactions of sampled material. A transparent LMJ-SSP was constructed and colored analytes were used so that the surface sampling process, plug formation, and the chemical reactions could be visually monitored at the sampling end of the probe before being analyzed by mass spectrometry of the injected sample plug. Injection plug peak widths were consistent for plug hold times as long as the 8 min maximum attempted (RSD below 1.
View Article and Find Full Text PDFDirect liquid extraction based surface sampling, a technique previously demonstrated with continuous flow and autonomous pipette liquid microjunction surface sampling probes, has recently been implemented as a liquid extraction surface analysis (LESA) mode on a commercially available chip-based infusion nanoelectrospray ionization (nanoESI) system. In the present paper, the LESA mode was applied to the analysis of 96-well format custom-made solid-phase extraction (SPE) cards, with each well consisting of either a 1 or a 2 mm diameter monolithic hydrophobic stationary phase. These substrate wells were conditioned, loaded with either single or multi-component aqueous mixtures, and read out using the commercial nanoESI system coupled to a hybrid triple quadrupole/linear ion trap mass spectrometer or a linear ion trap mass spectrometer.
View Article and Find Full Text PDF