Breast cancers with estrogen receptor α (ERα) expression are often more differentiated histologically than ERα-negative tumors, but the reasons for this difference are poorly understood. One possible explanation is that transcriptional cofactors associated with ERα determine the expression of genes which promote a more differentiated phenotype. In this study, we identify one such cofactor as coactivator-associated arginine methyltransferase 1 (CARM1), a unique coactivator of ERα that can simultaneously block cell proliferation and induce differentiation through global regulation of ERα-regulated genes.
View Article and Find Full Text PDFEstrogen receptor (ER)alpha activity is regulated by phosphorylation at several sites. Recently several antibodies specific for individual phosphorylated sites within ERalpha have became available. Validation and use of these antibodies suggests that several forms of phosphorylated ERalpha can be detected in multiple ER+ human breast tumor samples, thus providing relevance for investigating the regulation and function of phosphorylated ERalpha in human breast cancer.
View Article and Find Full Text PDFEstrogen receptor alpha (ERalpha) activity is regulated by phosphorylation at several sites. Recently several antibodies specific for individual phosphorylated sites within ERalpha have became available. Such antibodies potentially provide invaluable tools to gain insight into the relevance in vivo of phosphorylated ERalpha in human breast tumors.
View Article and Find Full Text PDFInhibition of protein kinase A (PKA) promotes estrogen-dependent growth of MCF7 breast cancer cells, although the mechanisms by which PKA regulates estrogen receptor (ER) function remain unclear. In this study elevation of cAMP by forskolin/3-isobutyl-1-methylxanthine (F/I) suppressed estradiol-dependent MCF7 and T47D breast cancer cell growth but not tamoxifen-resistant MCF7-LCC2 cells. Although F/I induced ligand independent activation of ERalpha, F/I also decreased estradiol-dependent reporter gene transcription.
View Article and Find Full Text PDFTamoxifen is currently used as adjuvant therapy for estrogen receptor (ER) positive breast cancer patients and as a chemopreventative agent. Although ER is a predictive marker for tamoxifen response, ER status fails to predict tamoxifen response in a significant number of patients highlighting the need to identify new pathways for tamoxifen sensitivity/resistance. To identify novel proteins induced by tamoxifen in breast cancer cells sensitive to tamoxifen growth inhibition, two-dimensional (2D) gel electrophoresis was used to profile proteins in T47D breast cancer cells.
View Article and Find Full Text PDFAn understanding of posttranslational events in nuclear receptor signaling is crucial for drug design and clinical therapeutic strategies. Phosphorylation is a well-characterized posttranslational modification that regulates subcellular localization and function of nuclear receptors and coregulators. Although the role of single phosphorylation sites in nuclear receptor function has been described, the contribution of combinations of multiple phosphorylation sites to receptor function remains unclear.
View Article and Find Full Text PDFTamoxifen, a selective estrogen receptor (ER) modulator, is the most widely prescribed hormonal therapy treatment for breast cancer. Despite the benefits of tamoxifen therapy, almost all tamoxifen-responsive breast cancer patients develop resistance to therapy. In addition, tamoxifen displays estrogen-like effects in the endometrium increasing the incidence of endometrial cancer.
View Article and Find Full Text PDFIntroduction: Although the effects of progesterone on cell cycle progression are well known, its role in spreading and adhesion of breast cancer cells has not attracted much attention until recently. Indeed, by controlling cell adhesion proteins, progesterone may play a direct role in breast cancer invasion and metastasis. Progesterone has also been shown to modulate epidermal growth factor (EGF) effects in neoplasia, although EGF effects on progesterone pathways and targets are less well understood.
View Article and Find Full Text PDF