The neuroscientific field benefits from the conjoint evolution of experimental and computational techniques, allowing for the reconstruction and simulation of complex models of neurons and synapses. Chemical synapses are characterized by presynaptic vesicle cycling, neurotransmitter diffusion, and postsynaptic receptor activation, which eventually lead to postsynaptic currents and subsequent membrane potential changes. These mechanisms have been accurately modeled for different synapses and receptor types (AMPA, NMDA, and GABA) of the cerebellar cortical network, allowing simulation of their impact on computation.
View Article and Find Full Text PDFThe cerebellar cortex microcircuit is characterized by a highly ordered neuronal architecture having a relatively simple and stereotyped connectivity pattern. For a long time, this structural simplicity has incorrectly led to the idea that anatomical considerations would be sufficient to understand the dynamics of the underlying circuitry. However, recent experimental evidence indicates that cerebellar operations are much more complex than solely predicted by anatomy, due to the crucial role played by neuronal and synaptic properties.
View Article and Find Full Text PDFLong-term synaptic plasticity is thought to provide the substrate for adaptive computation in brain circuits but very little is known about its spatiotemporal organization. Here, we combined multi-spot two-photon laser microscopy in rat cerebellar slices with realistic modeling to map the distribution of plasticity in multi-neuronal units of the cerebellar granular layer. The units, composed by ~300 neurons activated by ~50 mossy fiber glomeruli, showed long-term potentiation concentrated in the core and long-term depression in the periphery.
View Article and Find Full Text PDFThe cerebellar granule cells (GrCs) are classically described as a homogeneous neuronal population discharging regularly without adaptation. We show that GrCs in fact generate diverse response patterns to current injection and synaptic activation, ranging from adaptation to acceleration of firing. Adaptation was predicted by parameter optimization in detailed computational models based on available knowledge on GrC ionic channels.
View Article and Find Full Text PDFThe optical monitoring of multiple single neuron activities requires high-throughput parallel acquisition of signals at millisecond temporal resolution. To this aim, holographic two-photon microscopy (2PM) based on spatial light modulators (SLMs) has been developed in combination with standard laser scanning microscopes. This requires complex coordinate transformations for the generation of holographic patterns illuminating the points of interest.
View Article and Find Full Text PDFNicotinic acid adenine dinucleotide phosphate (NAADP) serves as the ideal trigger of spatio-temporally complex intracellular Ca(2+) signals. However, the identity of the intracellular Ca(2+) store(s) recruited by NAADP, which may include either the endolysosomal (EL) or the endoplasmic reticulum (ER) Ca(2+) pools, is still elusive. Here, we show that the Ca(2+) response to NAADP was suppressed by interfering with either EL or ER Ca(2+) sequestration.
View Article and Find Full Text PDFIn order to investigate the spatiotemporal organization of neuronal activity in local microcircuits, techniques allowing the simultaneous recording from multiple single neurons are required. To this end, we implemented an advanced spatial-light modulator two-photon microscope (SLM-2PM). A critical issue for cerebellar theory is the organization of granular layer activity in the cerebellum, which has been predicted by single-cell recordings and computational models.
View Article and Find Full Text PDF