The brain is essential for processing and integrating sensory signals coming from peripheral tissues. Conversely, the autonomic nervous system regulated by brain centres modulates the immune responses involved in the genesis and progression of cardiovascular diseases. Understanding the pathophysiological bases of this relationship established between the brain and immune system is relevant for advancing therapies.
View Article and Find Full Text PDFBackground: Hypertension is one of the main risk factors for dementia and cognitive impairment.
Methods: We used the model of transverse aortic constriction to induce chronic pressure overload in mice. We characterized brain injury by advanced translational applications of magnetic resonance imaging.
Front Aging Neurosci
July 2023
Hypertension is a major risk factor for dementia, including both vascular and neurodegenerative etiologies. With the original aim of studying the effect of blood pressure elevation on canonical target organs of hypertension as the heart, the vasculature or the kidneys, several experimental models of hypertension have sprouted during the years. With the more recent interest of understanding the cerebral injury burden caused by hypertension, it is worth understanding how the main models of hypertension or localized cerebral hypertension stand in the field of hypertension-induced cerebral injury and cognitive impairment.
View Article and Find Full Text PDFAims: Dysregulated immune response contributes to inefficiency of treatment strategies to control hypertension and reduce the risk of end-organ damage. Uncovering the immune pathways driving the transition from the onset of hypertensive stimulus to the manifestation of multi-organ dysfunction are much-needed insights for immune targeted therapy.
Methods And Results: To aid visualization of cellular events orchestrating multi-organ pathogenesis, we modelled hypertensive cardiovascular remodelling in zebrafish.
Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia).
View Article and Find Full Text PDFThe complex interactions established between the nervous and immune systems have been investigated for a long time. With the advent of small and portable devices to record and stimulate nerve activity, researchers from many fields began to be interested in how nervous activity can elicit immune responses and whether this activity can be manipulated to trigger specific immune responses. Pioneering works demonstrated the existence of a cholinergic inflammatory reflex, capable of controlling the systemic inflammatory response through a vagus nerve-mediated modulation of the spleen.
View Article and Find Full Text PDFHypertension is a multifactorial disease ensuing from the continuous challenge imposed by several risk factors on the cardiovascular system. Classically known pathophysiological alterations associated with hypertension comprise neurogenic mechanisms dysregulating the autonomic nervous system (ANS), vascular dysfunction, and excessive activation of the renin angiotensin system. During the past few years, a considerable number of studies indicated that immune activation and inflammation also have an important role in the onset and maintenance of hypertension.
View Article and Find Full Text PDFAngiotensin II (AngII) is a peptide hormone that affects the cardiovascular system, not only through typical effects on the vasculature, kidneys, and heart, but also through less understood roles mediated by the brain and the immune system. Here, we address the hard-wired neural connections within the autonomic nervous system that modulate splenic immunity. Chronic AngII infusion triggers burst firing of the vagus nerve celiac efferent, an effect correlated with noradrenergic activation in the spleen and T cell egress.
View Article and Find Full Text PDFObjective- EMILIN-1 (elastin microfibrils interface located protein-1) protein inhibits pro-TGF-β (transforming growth factor-β) proteolysis and limits TGF-β bioavailability in vascular extracellular matrix. Emilin1 null mice display increased vascular TGF-β signaling and are hypertensive. Because EMILIN-1 is expressed in vessels from embryonic life to adulthood, we aimed at unravelling whether the hypertensive phenotype of Emilin1 null mice results from a developmental defect or lack of homeostatic role in the adult.
View Article and Find Full Text PDFCurr Hypertens Rep
February 2018
Purpose Of Review: Hypertension still represents a huge health problem, causing death and disability and rising at epidemic levels worldwide. The availability of a vast array of antihypertensive therapeutic strategies still fails to adequately treat significant fractions of refractory patients. The possible explanation to this disappointing evidence should be ascribed to the fact that myriad of mechanisms contribute to onset and maintenance of hypertension.
View Article and Find Full Text PDFBackground: Chronic increased arterial blood pressure has been associated with executive dysfunction, slowing of attention and mental processing speed, and later with memory deficits. Due to the absence of a concrete therapeutic approach to this pathophysiological process, in the last decades there has been an increasing interest in the use of nutraceuticals, especially those with antioxidant properties, which own strong neuroprotective potential, that may help to improve cognitive function and to delay the onset of dementia.
Results: We evaluated the effects of the treatment with a new nutraceutical preparation containing different molecules with potent antioxidant properties (AkP05, IzzeK®) and placebo on a cohort of thirty-six hypertensive patients.
Aims: Chronic increase of mineralocorticoids obtained by administration of deoxycorticosterone acetate (DOCA) results in salt-dependent hypertension in animals. Despite the lack of a generalized sympathoexcitation, DOCA-salt hypertension has been also associated to overdrive of peripheral nervous system in organs typically targeted by blood pressure (BP), as kidneys and vasculature. Aim of this study was to explore whether DOCA-salt recruits immune system by overactivating sympathetic nervous system in lymphoid organs and whether this is relevant for hypertension.
View Article and Find Full Text PDFAortic aneurysms are life-threatening conditions with effective treatments mainly limited to emergency surgery or trans-arterial endovascular stent grafts, thus calling for the identification of specific molecular targets. Genetic studies have highlighted controversial roles of transforming growth factor β (TGF-β) signaling in aneurysm development. Here, we report on aneurysms developing in adult mice after smooth muscle cell (SMC)-specific inactivation of Smad4, an intracellular transducer of TGF-β.
View Article and Find Full Text PDFMetabolic disorders have been identified as major health problems affecting a large portion of the world population. In addition, obesity and insulin resistance are principal risk factors for the development of cardiovascular diseases. Altered immune responses are common features of both hypertension and obesity and, moreover, the involvement of the nervous system in the modulation of immune system is gaining even more attention in both pathophysiological contexts.
View Article and Find Full Text PDFPI3Kγ is a multifaceted protein, crucially involved in cardiovascular and immune systems. Several studies described the biological and physiological functions of this enzyme in the regulation of cardiovascular system, while others stressed its role in the modulation of immunity. Although PI3Kγ has been historically investigated for its role in leukocytes, the last decade of research also dedicated efforts to explore its functions in the cardiovascular system.
View Article and Find Full Text PDFThe crucial role of the immune system in hypertension is now widely recognized. We previously reported that hypertensive challenges couple the nervous drive with immune system activation, but the physiological and molecular mechanisms of this connection are unknown. Here, we show that hypertensive challenges activate splenic sympathetic nerve discharge to prime immune response.
View Article and Find Full Text PDFHypertension and dementia represent two major public health challenges worldwide, notably in the elderly population. Although these two conditions have classically been recognized as two distinct diseases, mounting epidemiological, clinical and experimental evidence suggest that hypertension and dementia are strictly intertwined. Here, we briefly report how hypertension profoundly affects brain homeostasis, both at the structural and functional level.
View Article and Find Full Text PDFHigh Blood Press Cardiovasc Prev
March 2016
Genetic Alzheimer's disease (AD) accounts for only few AD cases and is almost exclusively associated to increased amyloid production in the brain. Instead, the majority of patients is affected with the AD sporadic form with typical alterations of clearance mechanisms of the brain. Most studies use engineered animal models that mimic genetic AD.
View Article and Find Full Text PDF