Publications by authors named "Mariah M Hoffman"

This study investigates the effects of a dual selective Class I histone deacetylase (HDAC)/lysine-specific histone demethylase 1A (LSD1) inhibitor known as 4SC-202 (Domatinostat) on tumor growth and metastasis in a highly metastatic murine model of Triple Negative Breast Cancer (TNBC). 4SC-202 is cytotoxic and cytostatic to the TNBC murine cell line 4T1 and the human TNBC cell line MDA-MB-231; the drug does not kill the normal breast epithelial cell line MCF10A. Furthermore, 4SC-202 reduces cancer cell migration.

View Article and Find Full Text PDF

Central nervous system atypical teratoid/rhabdoid tumors (ATRTs) are rare and aggressive tumors with a very poor prognosis. Current treatments for ATRT include resection of the tumor, followed by systemic chemotherapy and radiation therapy, which have toxic side effects for young children. Gene expression analyses of human ATRTs and normal brain samples indicate that ATRTs have aberrant expression of epigenetic markers including class I histone deacetylases (HDAC's) and lysine demethylase (LSD1).

View Article and Find Full Text PDF

This project involves an examination of the effect of the small molecule inhibitor 4SC-202 on the growth of the pediatric brain cancer medulloblastoma. The small molecule inhibitor 4SC-202 significantly inhibits the viability of the pediatric desmoplastic cerebellar human medulloblastoma cell line DAOY, with an IC = 58.1 nM, but does not affect the viability of noncancerous neural stem cells (NSC).

View Article and Find Full Text PDF

Novel discoveries involving the evaluation of potential therapeutics are based on newly identified molecular targets for atypical teratoid rhabdoid tumors (ATRT), which are the most common form of infantile brain tumors. Central nervous system ATRTs are rare, aggressive, and fast growing tumors of the brain and spinal cord and carry a very poor prognosis. Currently, the standard of care for ATRT patients is based on surgical resection followed by systemic chemotherapy and radiotherapy, which result in severe side effects.

View Article and Find Full Text PDF
Article Synopsis
  • * The system produces intense yellow fluorescence in the presence of copper(II) ions, functioning as a selective fluorescence sensor, while a green-fluorescent intermediate forms in the presence of water.
  • * In high-water environments, the reaction pathway shifts, with the oxidation of a secondary alcohol occurring faster than the hydrolysis of the hydrazone, ultimately resulting in the same anthraquinone product; dioxygen also significantly impacts fluorescence emission by quenching it.
View Article and Find Full Text PDF