Publications by authors named "Mariah Beaver"

Disruption of histone acetylation-mediated gene control is a critical step in Alzheimer's Disease (AD), yet chromatin analysis of antagonistic histone acetyltransferases (HATs) and histone deacetylases (HDACs) causing these alterations remains uncharacterized. We report the first Tip60 HAT versus HDAC2 chromatin (ChIP-seq) and transcriptional (RNA-seq) profiling study in brains that model early human AD. We find Tip60 and HDAC2 predominantly recruited to identical neuronal genes.

View Article and Find Full Text PDF

Amyloid-β (Aβ) peptides can form protease-resistant aggregates within and outside of neurons. Accumulation of these aggregates is a hallmark of Alzheimer's disease (AD) neuropathology and contributes to devastating cognitive deficits associated with this disorder. The primary etiological factor for Aβ aggregation is either an increase in Aβ production or a decrease in its clearance.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related neurodegenerative disorder hallmarked by amyloid-β (Aβ) plaque accumulation, neuronal cell death, and cognitive deficits that worsen during disease progression. Histone acetylation dysregulation, caused by an imbalance between reduced histone acetyltransferases (HAT) Tip60 and increased histone deacetylase 2 (HDAC2) levels, can directly contribute to AD pathology. However, whether such AD-associated neuroepigenetic alterations occur in response to Aβ peptide production and can be protected against by increasing Tip60 levels over the course of neurodegenerative progression remains unknown.

View Article and Find Full Text PDF

Epigenetic dysregulation is a common mechanism shared by molecularly and clinically heterogenous neurodegenerative diseases (NDs). Histone acetylation homeostasis, maintained by the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), is necessary for appropriate gene expression and neuronal function. Disruption of neural acetylation homeostasis has been implicated in multiple types of NDs including Alzheimer's disease (AD), yet mechanisms underlying alterations remain unclear.

View Article and Find Full Text PDF

Genomic reorganizations mediating the engagement of target genes to transcription factories (TFs), characterized as specialized nuclear subcompartments enriched in hyperphosphorylated RNA polymerase II (RNAPII) and transcriptional regulators, act as an important layer of control in coordinating efficient gene transcription. However, their presence in hippocampal neurons and potential role in activity-dependent coregulation of genes within the brain remains unclear. Here, we investigate whether the well-characterized role for the histone acetyltransferase (HAT) Tip60 in mediating epigenetic control of inducible neuroplasticity genes involves TF associated chromatin reorganization in the hippocampus.

View Article and Find Full Text PDF
Article Synopsis
  • Disruption of the balance between Tip60 histone acetyltransferase (HAT) and histone deacetylase 2 (HDAC2) occurs early in the brain of Alzheimer's disease models, leading to cognitive decline before amyloid plaques develop.
  • Repressing neuroplasticity genes is linked to increased HDAC2 binding, reduced Tip60 activity, and decreased histone acetylation, negatively impacting brain function.
  • Restoring Tip60 levels in the brain has the potential to reverse these epigenetic changes, reactivate synaptic plasticity genes, and improve cognitive abilities.
View Article and Find Full Text PDF