Publications by authors named "Mariagrazia Marucci"

The large number of studies involving nanoparticles for cancer therapy is due to their peculiar features: they protect loaded active molecules while extending circulation time and can extravasate from the blood flow to the tumor to deliver drugs directly in the target area. Mathematical modeling can provide a preliminary exploration of design space to optimize an experimental activity that often relies on a trial-and-error approach. However, because of the characteristic size of these vectors (10-1000 nm), numerous phenomena of interest occur at different time and length scales, making a single modeling technique insufficient to fully characterize the system of interest.

View Article and Find Full Text PDF

Crystals of active pharmaceutical ingredients (API) are prone to triboelectric charging due to their dielectric nature. This characteristic, coupled with their typically low density and often large aspect ratio, poses significant challenges in the manufacturing process. The pharmaceutical industry frequently encounters issues during the secondary processing of APIs, such as particle adhesion to walls, clump formation, unreliable flow, and the need for careful handling to mitigate the risk of fire and explosions.

View Article and Find Full Text PDF

Powders are usually dispensed, blended, and transferred between different manufacturing steps in so-called Intermediate Bulk Containers (IBCs), and discharge from an IBC plays a critical role in the ability to manufacture high-quality tablets. To better understand IBC discharge, the flow behavior of selected excipients was comprehensively characterized using a number of techniques including the Hausner ratio/Carr's index, Erweka flow test, FlowPro flow test, shear test and wall friction test as well as FT4 powder rheometer experiments. Jenike's hopper design methodology was then used to predict the minimum non-arching outlet diameter and the mode of flow.

View Article and Find Full Text PDF

The objective of this study was to characterize the rheology of a pharmaceutical material in the context of the µ(I)-rheology model and to use this model to predict powder flow in a manufacturing operation that is relevant to pharmaceutical manufacturing. The rheology of microcrystalline cellulose spheres was therefore characterized in terms of the μ(I)-rheology model using a modified Malvern Kinexus rheometer. As an example of an important problem in pharmaceutical manufacturing, the flow of these particles from a hopper was studied experimentally and numerically using a continuum Navier-Stokes solver based on the Volume-Of-Fluid (VOF) interface-capturing numerical method.

View Article and Find Full Text PDF

Polymer films based on mixtures of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC) have been widely used to coat pellets and tablets to modify the release profile of drugs. For three different EC/HPC films we used H and F MRI in combination with a designed release cell to monitor the drug, polymer and water in 5 dimensional (5D) datasets; three spatial, one diffusion or relaxation and a temporal dimension, in real time. We observed that the water inflow through the films correlated with the initiation of the dissolution of the drug in the tablet beneath the film.

View Article and Find Full Text PDF

There is a current trend in pharmaceutical manufacturing to shift from traditional batch manufacture to continuous manufacturing. The purpose of this study was to test the ability of an integrated continuous direct compression (CDC) line, in relation to batch processing, to achieve consistent tablet quality over long processing periods for formulations with poor flow properties or with a tendency to segregate. The study design included four industrially relevant formulations with different segregation indices and flow properties induced through different grades of the Active Pharmaceutical Ingredient (API), paracetamol, and major filler as well as varying the amount of API.

View Article and Find Full Text PDF

The aim of this work was to investigate how manufacturing conditions influence phase-separated films of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC) with different molecular weights of HPC. Two HPC grades, SSL and M, with weight average molecular weights (M) of 30×10g/mol and 365×10g/mol, respectively, were combined with EC 10 cps (70:30w/w EC/HPC) and spray-coated from ethanol solutions onto a rotating drum under well-controlled process conditions. Generally, a low spray rate resulted in a more rapid film drying process and, consequently, in smaller HPC-rich domains in the phase-separated film structure.

View Article and Find Full Text PDF

The aim of this study was to investigate the water transport over free standing films based on the aqueous ethyl cellulose (EC) coating Surelease and the drug (Theophylline) release mechanism from coated pellets. It was found that the main drug release rate from pellets was controlled by a diffusion mechanism. However, the drug release rate was altered by addition of sodium chloride to the external release medium.

View Article and Find Full Text PDF

Understanding how the pore structure influences the mass transport through a porous material is important in several applications, not the least in the design of polymer film coatings intended to control drug release. In this study, a polymer film made of ethyl cellulose and hydroxypropyl cellulose was investigated. The 3D structure of the films was first experimentally characterized using confocal laser scanning microscopy data and then mathematically reconstructed for the whole film thickness.

View Article and Find Full Text PDF

Drug release from oral pharmaceutical formulations can be modified by applying a polymeric coating film with controlled mass transport properties. Interaction of the coating film with water may crucially influence its composition and permeability to both water and drug. Understanding this interaction between film microstructure, wetting, and mass transport is important for the development of new coatings.

View Article and Find Full Text PDF

The major aims of this work were to study the effect of the molecular weight (Mw) of ethyl cellulose (EC) on the drug release profile from metoprolol succinate pellets coated with films comprising EC and hydroxypropyl cellulose (HPC) with a weight ratio of 70:30, and to understand the mechanisms behind the different release profiles. A broad range of Mws was used, and the kinetics of drug release and HPC leaching followed. The higher the Mw of EC, the slower the HPC leaching and the drug release processes.

View Article and Find Full Text PDF

The major aim of this work was to study the effect of two process parameters, temperature and coating flow, on permeability to water and structure of free films sprayed from mixtures of ethyl cellulose (EC), hydroxypropyl cellulose (HPC), and ethanol. The films were sprayed in a new spraying setup that was developed to mimic the film coating process in a fluid bed and to provide well controlled conditions. EC and HPC phase separated during the film drying process, and EC- and HPC-rich domains were formed.

View Article and Find Full Text PDF

The release mechanism of metoprolol succinate pellets coated with a blend of a water-insoluble polymer, ethyl cellulose (EC), and a water-soluble polymer, hydroxypropyl cellulose (HPC), is mechanistically explained. The kinetics of drug release and HPC leaching were followed for drug doses. The coating was initially not permeable to the drug, and release started only after a critical amount of the HPC had been leached out.

View Article and Find Full Text PDF

The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered.

View Article and Find Full Text PDF

A new mechanistic model of drug release by osmotic pumping and diffusion from pellets coated with a semipermeable film developing pores created by the leaching of water-soluble compounds initially present in the coating, has been developed. The model describes dynamically all the main processes occurring during release, i.e.

View Article and Find Full Text PDF

The effect of the blend ratio of water-insoluble ethyl cellulose (EC) and water-soluble hydroxypropyl cellulose (HPC-LF), on the properties of sprayed films and on the drug release mechanism of formulations coated with the material was investigated. When the original HPC-LF content exceeded 22%, both the amount of HPC-LF leached out and the water permeability of the films increased drastically when they were immersed in a phosphate buffer solution. The release mechanism of potassium nitrate through EC/HPC-LF films containing 20, 24 and 30% HPC-LF was elucidated in a new release cell equipped with a manometer to measure the pressure build-up inside the cell.

View Article and Find Full Text PDF

A new mechanistic model of drug release during the lag phase from coated pellets undergoing cracking in the coating due to the hydrostatic pressure built up inside the pellet has been developed. The model describes dynamically all the main release processes occurring during the lag phase in pellets coated with a semi-permeable membrane, i.e.

View Article and Find Full Text PDF

A stirred tank membrane reactor is used to study the kinetics of polygalacturonic acid (PGA) enzymatic hydrolysis. The reactor operates in semicontinuous configuration: the native biopolymer is loaded at the initial time and the system is continuously fed with the buffer. The effect of retention time (from 101 to 142 min) and membrane molecular weight cutoff (from 1 to 30 kDa) on the rate of permeable oligomers production is investigated.

View Article and Find Full Text PDF

The aim of this study was to develop a simple experimental methodology and to develop a mechanistic model to characterize the release mechanism from pellets developing cracks during the release process with special focus on osmotic effects. The release of remoxipride from pellets coated with an ethyl cellulose film was chosen as a case study. Dose release experiments at different bulk osmotic pressures revealed that the release process was mainly osmotically driven.

View Article and Find Full Text PDF

In this work, Electronic Speckle Pattern Interferometry (ESPI) is presented as a non-invasive tool to study drug transport in controlled release systems. ESPI is shown to be a feasible tool to measure drug film permeability via comparison with an ordinary diaphragm cell. A specially designed cuvette was used in the release study: the polymeric film separated the donor and the receiving chambers of the cuvette to create a diffusion cell with no mixing in the two chambers.

View Article and Find Full Text PDF

The enzymatic depolymerization of the pectic substance polygalacturonic acid (PGA) is studied in batch reactor. The number-average molecular weight of native substrate is estimated, using a simple and quick technique, to be approximately 11.1 kDa, the polymeric chains consisting on average of 63 galacturonic acid units.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Mariagrazia Marucci"

  • - Mariagrazia Marucci's recent research focuses on the development and optimization of pharmaceutical formulations and delivery systems, particularly involving nanoparticles and polymeric coatings, to enhance drug release and bioavailability in clinical applications, especially against cancer.
  • - Her studies utilize advanced mathematical modeling and experimental techniques to understand and predict the flow and release mechanisms of active pharmaceutical ingredients (APIs) from various formulations, addressing critical challenges in the pharmaceutical manufacturing process such as consistency and quality control.
  • - Key findings include the significance of multiscale modeling in characterizing nanoparticle behavior, the impact of manufacturing conditions on the properties of polymeric films, and the mechanisms behind drug release in relation to particle size and formulation attributes, leading to more efficient and reliable drug delivery systems.

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: