This study presents a novel approach to the development of high-performance supercapacitors through 3D printing technology. We synthesized a composite material consisting of silver-doped reduced graphene oxide (rGO) and dodecylbenzenesulfonic acid (DBSA)-doped polyaniline (PANI), which was further blended with polylactic acid (PLA) for additive manufacturing. The composite was extruded into filaments and printed into circular disc electrodes using fused deposition modeling (FDM).
View Article and Find Full Text PDFHerein, additive manufacturing, which is extremely promising in different sectors, has been adopted in the electrical energy storage field to fabricate efficient materials for supercapacitor applications. In particular, AlO-, steel-, and Cu-based microparticles have been used for the realization of 3D self-assembling materials covered with reduced graphene oxide to be processed through additive manufacturing. Functionalization of the particles with amino groups and a subsequent "self-assembly" step with graphene oxide, which was contextually partially reduced to rGO, was carried out.
View Article and Find Full Text PDFIn the present paper, multifunctional flower-like nanoparticles were synthesized to be used in the leather finishing. They are capable of conferring simultaneously and synergistic antimicrobial, self-cleaning, light resistance, hydrophobic, mechanical, thermal, and fluorescent properties due to the presence of Ag, TiO, and SiO NPs. These nanoparticles form a "flower-like" structure in which the "pistil" is made up of TiO and the "petals" that surround it of silver nanoparticles and silica nanoparticles, whose dimensions are of the order of ten nanometers.
View Article and Find Full Text PDFSupercapacitors have attracted considerable attention due to their advantages, including being lightweight and having rapid charge-discharge, a good rate capability, and high cyclic stability. Electrodes are one of the most important factors influencing the performance of supercapacitors. Herein, a three-dimensional network of rough and porous micropebbles of CeCuSi has been prepared using a one-step procedure and tested for the first time as a supercapacitor electrode.
View Article and Find Full Text PDFNowadays, iron (II) selenide (FeSe), which has been widely studied for years to unveil the high-temperature superconductivity in iron-based superconductors, is drawing increasing attention in the electrical energy storage (EES) field as a supercapacitor electrode because of its many advantages. In this study, very small FeSe particles were synthesized via a simple, low-cost, easily scalable, and reproducible solvothermal method. The FeSe particles were characterized using cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) measurements, and electrochemical impedance spectroscopy (EIS), revealing enhanced electrochemical properties: a high capacitance of 280 F/g at 0.
View Article and Find Full Text PDFPtRu/MoS nanoparticles (NPs) (PtRu alloy partially coated by one-layer MoS nanosheets) were prepared through a 'wet chemistry' approach. The obtained NPs were directly embedded, at 5 parts per hundred resin/rubber (phr) loading, in a poly (divinylbenzene-co-vinyl benzyl chloride) hyper-crosslinked (HCL) resin, synthesized via bulk polymerization of the resin precursors, followed by conventional FeCl post-crosslinking. The obtained HCL nanocomposites were characterized to evaluate the effect of the NPs.
View Article and Find Full Text PDFThe catalytic activity of snowman-like and core-shell FeO/Au nanoparticles (NPs), obtained through a "wet chemistry" approach which directly restitutes nanocatalysts stable and highly active in the reaction medium, was tested towards N-alkylation reactions. The nanocatalysts were tested for the synthesis of secondary amines. The core-shell NPs, thanks to the surface properties, homogeneous dispersion and intimate connection with reagents in the catalyst medium, exhibited an excellent catalytic activity (e.
View Article and Find Full Text PDFBioresour Technol
October 2018
Physical adsorption preserving activity and support reusability was used to directly bond lipase from Thermomyces lanuginosus on citric acid (CA) modified FeO/Au magnetic nanoparticles. A new faster approach has been used for CA ligand exchange, which ensures an high payload of stable enzyme. The immobilized lipase was tested for the biodiesel production from spent coffee ground in a solvent free system.
View Article and Find Full Text PDF