Non-invasive positron emission tomography (PET) of vascular inflammation and atherosclerotic plaque by identifying increased uptake of F-fluordeoxyglucose (F-FDG) is a powerful tool for monitoring disease activity, progression, and its response to therapy. F-FDG PET/computed tomography (PET/CT) of the aorta and carotid arteries has become widely used to assess changes in inflammation in clinical trials. However, the recent advent of hybrid PET/magnetic resonance (PET/MR) scanners has advantages for vascular imaging due to the reduction in radiation exposure and improved soft tissue contrast of MR compared to CT.
View Article and Find Full Text PDFCardiac positron emission tomography (PET) imaging suffers from image blurring due to the constant motion of the heart that can impact interpretation. Hybrid PET/magnetic resonance (MR) has the potential to use radiation-free MR imaging to correct for the effects of cardio-respiratory motion in the PET data, improving qualitative and quantitative PET imaging in the heart. The purpose of this study was (i) to implement a MR image-based motion-corrected PET/MR method and (ii) to perform a proof-of-concept study of quantitative myocardial PET data in patients.
View Article and Find Full Text PDF