The microtubule cytoskeleton is responsible for sustained, long-range intracellular transport of mRNAs, proteins, and organelles in neurons. Neuronal microtubules must be stable enough to ensure reliable transport, but they also undergo dynamic instability, as their plus and minus ends continuously switch between growth and shrinking. This process allows for continuous rebuilding of the cytoskeleton and for flexibility in injury settings.
View Article and Find Full Text PDFIdentifying unique parameters for mathematical models describing biological data can be challenging and often impossible. Parameter identifiability for partial differential equations models in cell biology is especially difficult given that many established in vivo measurements of protein dynamics average out the spatial dimensions. Here, we are motivated by recent experiments on the binding dynamics of the RNA-binding protein PTBP3 in RNP granules of frog oocytes based on fluorescence recovery after photobleaching (FRAP) measurements.
View Article and Find Full Text PDFThe microtubule cytoskeleton is responsible for sustained, long-range intracellular transport of mRNAs, proteins, and organelles in neurons. Neuronal microtubules must be stable enough to ensure reliable transport, but they also undergo dynamic instability, as their plus and minus ends continuously switch between growth and shrinking. This process allows for continuous rebuilding of the cytoskeleton and for flexibility in injury settings.
View Article and Find Full Text PDFAcademic spaces in colleges and universities span classrooms for 10 students to lecture halls that hold over 600 people. During the break between consecutive classes, students from the first class must leave and the new class must find their desks, regardless of whether the room holds 10 or 600 people. Here we address the question of how the size of large lecture halls affects classroom-turnover times, focusing on non-emergency settings.
View Article and Find Full Text PDFFilament-motor interactions inside cells play essential roles in many developmental as well as other biological processes. For instance, actin-myosin interactions drive the emergence or closure of ring channel structures during wound healing or dorsal closure. These dynamic protein interactions and the resulting protein organization lead to rich time-series data generated by using fluorescence imaging experiments or by simulating realistic stochastic models.
View Article and Find Full Text PDFCortical actin networks are highly dynamic and play critical roles in shaping the mechanical properties of cells. The actin cytoskeleton undergoes significant reorganization in many different contexts, including during directed cell migration and over the course of the cell cycle, when cortical actin can transition between different configurations such as open patched meshworks, homogeneous distributions, and aligned bundles. Several types of myosin motor proteins, characterized by different kinetic parameters, have been involved in this reorganization of actin filaments.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2021
Virtually all forms of life, from single-cell eukaryotes to complex, highly differentiated multicellular organisms, exhibit a property referred to as symmetry. However, precise measures of symmetry are often difficult to formulate and apply in a meaningful way to biological systems, where symmetries and asymmetries can be dynamic and transient, or be visually apparent but not reliably quantifiable using standard measures from mathematics and physics. Here, we present and illustrate a novel measure that draws on concepts from information theory to quantify the degree of symmetry, enabling the identification of approximate symmetries that may be present in a pattern or a biological image.
View Article and Find Full Text PDFStudying the spread of infections is an important tool in limiting or preventing future outbreaks. A first step in understanding disease dynamics is constructing networks that reproduce features of real-world interactions. In this paper, we generate networks that maintain some features of the partial interaction networks that were recorded in an existing diary-based survey at the University of Warwick.
View Article and Find Full Text PDFIn developmental biology as well as in other biological systems, emerging structure and organization can be captured using time-series data of protein locations. In analyzing this time-dependent data, it is a common challenge not only to determine whether topological features emerge, but also to identify the timing of their formation. For instance, in most cells, actin filaments interact with myosin motor proteins and organize into polymer networks and higher-order structures.
View Article and Find Full Text PDFIn the United States, the public has a constitutional right to access criminal trial proceedings. In practice, it can be difficult or impossible for the public to exercise this right. We present JUSTFAIR: Judicial System Transparency through Federal Archive Inferred Records, a database of criminal sentencing decisions made in federal district courts.
View Article and Find Full Text PDFIn many biological systems, the movement of individual agents is characterized having multiple qualitatively distinct behaviors that arise from a variety of biophysical states. For example, in cells the movement of vesicles, organelles, and other intracellular cargo is affected by their binding to and unbinding from cytoskeletal filaments such as microtubules through molecular motor proteins. A typical goal of theoretical or numerical analysis of models of such systems is to investigate effective transport properties and their dependence on model parameters.
View Article and Find Full Text PDFNeurofilaments are abundant space-filling cytoskeletal polymers in axons that are transported along microtubule tracks. Neurofilament transport is accelerated at nodes of Ranvier, where axons are locally constricted. Strikingly, these constrictions are accompanied by sharp decreases in neurofilament number, no decreases in microtubule number, and increases in the packing density of these polymers, which collectively bring nodal neurofilaments closer to their microtubule tracks.
View Article and Find Full Text PDFIn a complex system, the interactions between individual agents often lead to emergent collective behavior such as spontaneous synchronization, swarming, and pattern formation. Beyond the intrinsic properties of the agents, the topology of the network of interactions can have a dramatic influence over the dynamics. In many studies, researchers start with a specific model for both the intrinsic dynamics of each agent and the interaction network and attempt to learn about the dynamics of the model.
View Article and Find Full Text PDFMathematical models can provide useful insights explaining behavior observed in experimental data; however, rigorous analysis is needed to select a subset of model parameters that can be informed by available data. Here we present a method to estimate an identifiable set of parameters based on baseline left ventricular pressure and volume time series data. From this identifiable subset, we then select, based on current understanding of cardiovascular control, parameters that vary in time in response to blood withdrawal, and estimate these parameters over a series of blood withdrawals.
View Article and Find Full Text PDFLocalization of messenger RNA (mRNA) at the vegetal cortex plays an important role in the early development of oocytes. While it is known that molecular motors are responsible for the transport of mRNA cargo along microtubules to the cortex, the mechanisms of localization remain unclear. We model cargo transport along microtubules using partial differential equations with spatially-dependent rates.
View Article and Find Full Text PDFFluorescence recovery after photobleaching (FRAP) is a well-established experimental technique to study binding and diffusion of molecules in cells. Although a large number of analytical and numerical models have been developed to extract binding and diffusion rates from FRAP recovery curves, active transport of molecules is typically not included in the existing models that are used to estimate these rates. Here we present a validated numerical method for estimating diffusion, binding/unbinding rates, and active transport velocities using FRAP data that captures intracellular dynamics through partial differential equation models.
View Article and Find Full Text PDF