For the past three decades, our laboratory has conducted pioneering research to elucidate the complexity of purinergic signaling in the CNS, alone and in collaboration with other groups, inspired by the ground-breaking efforts of Geoffrey Burnstock. This review summarizes our contribution to understand the nucleotide receptor signaling in the CNS with a special focus on the P2X7 receptor.
View Article and Find Full Text PDFEndothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y and P2Y receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation.
View Article and Find Full Text PDFBrain Struct Funct
April 2021
The purinergic system is one of the oldest cell-to-cell communication mechanisms and exhibits relevant functions in the regulation of the central nervous system (CNS) development. Amongst the components of the purinergic system, the ionotropic P2X7 receptor (P2X7R) stands out as a potential regulator of brain pathology and physiology. Thus, P2X7R is known to regulate crucial aspects of neuronal cell biology, including axonal elongation, path-finding, synapse formation and neuroprotection.
View Article and Find Full Text PDFLittle is known about the intrinsic specification of postnatal cerebellar neural stem cells (NSCs) and to what extent they depend on information from their local niche. Here, we have used an adapted cell preparation of isolated postnatal NSCs and live imaging to demonstrate that cerebellar progenitors maintain their neurogenic nature by displaying hallmarks of NSCs. Furthermore, by using this preparation, all the cell types produced postnatally in the cerebellum, in similar relative proportions to those observed in vivo, can be monitored.
View Article and Find Full Text PDFDevelopment of science needs the cooperation of many creative brains. Sometimes, ideas on a specific area get suddenly exhausted and then it is the time for a privileged mind to think in a different way and reach the turning point to introduce a new paradigm. This happened to Geoffrey Burnstock, a heterodox thinker and nonconformist scientist that has been the paladin of purinergic signalling since 1972, opening neuroscience to the understanding of organs and tissues functioning and development of a new pharmacology.
View Article and Find Full Text PDFCalcium is one of the most important intracellular messengers, triggering a wide range of cellular responses. Changes in intracellular free calcium concentration can be measured using calcium sensitive fluorescent dyes, which are either EGTA- or BAPTA-based organic molecules that change their spectral properties in response to Ca binding. One of the most common calcium indicators is the ratiometric dye Fura-2.
View Article and Find Full Text PDFDual-specificity protein phosphatases comprise a protein phosphatase subfamily with selectivity towards mitogen-activated protein (MAP) kinases, also named MKPs, or mitogen-activated protein kinase (MAPK) phosphatases. As powerful regulators of the intensity and duration of MAPK signaling, a relevant role is envisioned for dual-specificity protein phosphatases (DUSPs) in the regulation of biological processes in the nervous system, such as differentiation, synaptic plasticity, and survival. Important neural mediators include nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) that contribute to transcriptional induction and post-translational mechanisms of DUSP protein stabilization to maintain neuronal survival and differentiation.
View Article and Find Full Text PDFInt J Mol Sci
January 2019
We have tested the hypothesis that neuropathic pain acting as a stressor drives functional plasticity in the sympathoadrenal system. The relation between neuropathic pain and adrenal medulla function was studied with behavioral, immunohistochemical and electrophysiological techniques in rats subjected to chronic constriction injury of the sciatic nerve. In slices of the adrenal gland from neuropathic animals, we have evidenced increased cholinergic innervation and spontaneous synaptic activity at the splanchnic nerve⁻chromaffin cell junction.
View Article and Find Full Text PDFUnderstanding the mechanisms that control critical biological events of neural cell populations, such as proliferation, differentiation, or cell fate decisions, will be crucial to design therapeutic strategies for many diseases affecting the nervous system. Current methods to track cell populations rely on their final outcomes in still images and they generally fail to provide sufficient temporal resolution to identify behavioral features in single cells. Moreover, variations in cell death, behavioral heterogeneity within a cell population, dilution, spreading, or the low efficiency of the markers used to analyze cells are all important handicaps that will lead to incomplete or incorrect read-outs of the results.
View Article and Find Full Text PDFGlaucoma is a neuropathology, often accompanied by an elevated intraocular pressure (IOP), which can lead to blindness. Since DBA/2J mice develop glaucoma, several studies of the physiopathology of glaucoma have been reported in this animal model. It is also known that purinergic receptors are involved in the pathology of glaucoma by controlling aqueous humor production and drainage and therefore controlling IOP.
View Article and Find Full Text PDFThe distribution of nucleotide P2Y receptors across different tissues suggests that they fulfil key roles in a number of physiological and pathological conditions. P2Y is one of the latest P2Y receptors identified, a novel member of the Gi-coupled P2Y receptor subfamily that responds to ADP, together with P2Y and P2Y. Pharmacological studies drew attention to this new ADP receptor, with a pharmacology that overlaps that of P2Y receptors but with unique features and roles.
View Article and Find Full Text PDFObjective: ATP is released into the extracellular space during pathologic processes including increased neuronal firing. Once released, ATP acts on P2 receptors including ionotropic P2X and metabotropic P2Y receptors, resulting in changes to glial function and neuronal network excitability. Evidence suggests an involvement of P2Y receptors in the pathogenesis of epilepsy, but there has been no systematic effort to characterize the expression and function of the P2Y receptor family during seizures and in experimental and human epilepsy.
View Article and Find Full Text PDFHum Mol Genet
October 2016
Hypomorphic mutations in the gene encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme, ALPL in human or Akp2 in mice, cause hypophosphatasia (HPP), an inherited metabolic bone disease also characterized by spontaneous seizures. Initially, these seizures were attributed to the impairment of GABAergic neurotransmission caused by altered vitamin B6 (vit-B6) metabolism. However, clinical cases in human newborns and adults whose convulsions are refractory to pro-GABAergic drugs but controlled by the vit-B6 administration, suggest that other factors are involved.
View Article and Find Full Text PDFPrevious studies documented a cross-talk between purinergic P2X (P2XR) and nicotinic acetylcholine receptors (nAChR) in heterologous expression systems and peripheral preparations. We now investigated if this occurred in native brain preparations and probed its physiological function. We found that P2XR and nAChR were enriched in hippocampal terminals, where both P2X1-3R and α3, but not α4, nAChR subunits were located in the active zone and in dopamine-β-hydroxylase-positive hippocampal terminals.
View Article and Find Full Text PDFPurpose: To study retinal extracellular ATP levels and to assess the changes in the vesicular nucleotide transporter (VNUT) expression in a murine model of glaucoma during the development of the disease.
Methods: Retinas were obtained from glaucomatous DBA/2J mice at 3, 9, 15, and 22 months together with C57BL/6J mice used as age-matched controls. To study retinal nucleotide release, the retinas were dissected and prepared as flattened whole mounts and stimulated in Ringer buffer with or without 59 mM KCl.
New evidences have been reported that point to the ecto-enzyme, tissue-nonspecific alkaline phosphatase (TNAP), as a key element at the origin of two opposite phenomena, neuronal differentiation and neuronal degeneration. During brain development, TNAP plays an essential role for establishing neuronal circuits. The pro-neuritic effect induced by TNAP, which results in axonal length increase, is due to its enzymatic hydrolysis of extracellular ATP at the surrounding area of the axonal growth cone .
View Article and Find Full Text PDFP2X receptors are ligand-gated ion channels sensitive to extracellular nucleotides formed by the assembling of three equal or different P2X subunits. In this work we report, for the first time, the accumulation of the P2X6 subunit inside the nucleus of hippocampal neurons in an age-dependent way. This location is favored by its anchorage to endoplasmic reticulum through its N-terminal domain.
View Article and Find Full Text PDFAims: Inflammation is a significant contributor to cardiovascular disease and its complications; however, whether the myocardial inflammatory response is harmonized after cardiac injury remains to be determined. Some receptors of the innate immune system, including the nucleotide-binding oligomerization domain-like receptors (NLRs), play key roles in the host response after cardiac damage. Nucleotide-binding oligomerization domain containing 1 (NOD1), a member of the NLR family, is expressed in the heart, but its functional role has not been elucidated.
View Article and Find Full Text PDFComput Struct Biotechnol J
February 2015
Tissue-nonspecific alkaline phosphatase (TNAP) is one of the four isozymes in humans and mice that have the capacity to hydrolyze phosphate groups from a wide spectrum of physiological substrates. Among these, TNAP degrades substrates implicated in neurotransmission. Transgenic mice lacking TNAP activity display the characteristic skeletal and dental phenotype of infantile hypophosphatasia, as well as spontaneous epileptic seizures and die around 10 days after birth.
View Article and Find Full Text PDFThe subcellular distribution and early signalling events of P2X7 receptors were studied in mouse cerebellar granule neurons. Whole-cell patch-clamp recordings evidenced inwardly directed non-desensitizing currents following adenosine 5'-triphosphate (ATP; 600 µM) or 2'-3'-o-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP; 100 µM) administration to cells bathed in a medium with no-added divalent cations (Ca(2+) and Mg(2+)). Nucleotide-activated currents were inhibited by superfusion of 2.
View Article and Find Full Text PDFThe nucleotide uridine trisphosphate (UTP) released to the extracellular milieu acts as a signaling molecule via activation of specific pyrimidine receptors (P2Y). P2Y receptors are G protein-coupled receptors expressed in many cell types. These receptors mediate several cell responses and they are involved in intracellular calcium mobilization.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a major cause of paralysis with no current therapies. Following SCI, large amounts of ATP and other nucleotides are released by the traumatized tissue leading to the activation of purinergic receptors that, in coordination with growth factors, induce lesion remodeling and repair. We found that adult mammalian ependymal spinal cord-derived stem/progenitor cells (epSPCs) are capable of responding to ATP and other nucleotidic compounds, mainly through the activation of the ionotropic P2X4, P2X7, and the metabotropic P2Y1 and P2Y4 purinergic receptors.
View Article and Find Full Text PDFNeuro-2a (N2a) neuroblastoma cells display an ectoenzymatic hydrolytic activity capable of degrading diadenosine polyphosphates. The Apn A-cleaving activity has been analysed with the use of the fluorogenic compound BODIPY FL guanosine 5'-O-(3-thiotriphosphate) thioester. Hydrolysis of this dinucleotide analogue showed a hyperbolic kinetic with a Km value of 4.
View Article and Find Full Text PDF