Biol Res
October 2024
Background: C3H10T1/2 is a mesenchymal cell line capable of differentiating into osteoblasts, adipocytes and chondrocytes. The differentiation of these cells into osteoblasts is modulated by various transcription factors, such as RUNX2. Additionally, several interconnected signaling pathways, including the NOTCH pathway, play a crucial role in modulating their differentiation into mature bone cells.
View Article and Find Full Text PDFMacrophage activation is a complex process with multiple control elements that ensures an adequate response to the aggressor pathogens and, on the other hand, avoids an excess of inflammatory activity that could cause tissue damage. In this study, we have identified RND3, a small GTP-binding protein, as a new element in the complex signaling process that leads to macrophage activation. We show that RND3 expression is transiently induced in macrophages activated through Toll receptors and potentiated by IFN-.
View Article and Find Full Text PDFIL-13 signaling polarizes macrophages to an M2 alternatively activated phenotype, which regulates tissue repair and anti-inflammatory responses. However, an excessive activation of this pathway leads to severe pathologies, such as allergic airway inflammation and asthma. In this work, we identified NOTCH4 receptor as an important modulator of M2 macrophage activation.
View Article and Find Full Text PDFThe NOTCH signaling pathway is one of the highly conserved key pathways involved in most cell differentiation and proliferation processes during both developmental and adult stages in most animals. The NOTCH signaling pathway appears to be very simple but the existence of several receptors and ligands, their posttranslational modifications, their activation in the cell surface and its migration to the cell nucleus, as well as their interaction with multiple signaling pathways in the cytoplasm and the nucleus of cells, make the study of its function very complex.To determine the activation of NOTCH signaling in animal cells, several complementary approaches can be performed.
View Article and Find Full Text PDFNOTCH signaling is implicated in the development of breast cancer tumors. DLK2, a non-canonical inhibitor of NOTCH signaling, was previously shown to be involved in skin and breast cancer. In this work, we studied whether different levels of DLK2 expression influenced the breast cancer characteristics of MDA-MB-231 cells.
View Article and Find Full Text PDFNOTCH4 is a member of the NOTCH family of receptors whose expression is intensively induced in macrophages after their activation by Toll-like receptors (TLR) and/or interferon-γ (IFN-γ). In this work, we show that this receptor acts as a negative regulator of macrophage activation by diminishing the expression of proinflammatory cytokines, such as IL-6 and IL-12, and costimulatory proteins, such as CD80 and CD86. We have observed that NOTCH4 inhibits IFN-γ signaling by interfering with STAT1-dependent transcription.
View Article and Find Full Text PDFMacrophage activation by Toll receptors is an essential event in the development of the response against pathogens. NOTCH signaling pathway is involved in the control of macrophage activation and the inflammatory processes. In this work, we have characterized NOTCH signaling in macrophages activated by Toll-like receptor (TLR) triggering and determined that DLL1 and DLL4 are the main ligands responsible for NOTCH signaling.
View Article and Find Full Text PDFThe NOTCH family of receptors and ligands is involved in numerous cell differentiation processes, including adipogenesis. We recently showed that overexpression of each of the four NOTCH receptors in 3T3-L1 preadipocytes enhances adipogenesis and modulates the acquisition of the mature adipocyte phenotype. We also revealed that DLK proteins modulate the adipogenesis of 3T3-L1 preadipocytes and mesenchymal C3H10T1/2 cells in an opposite way, despite their function as non-canonical inhibitory ligands of NOTCH receptors.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFThe role of NOTCH signaling in adipogenesis is highly controversial, with data indicating null, positive or negative effects on this differentiation process. We hypothesize that these contradictory results could be due to the different global NOTCH signaling levels obtained in different experimental settings, because of a specific modulation of NOTCH receptors' activity by their ligands. We have previously demonstrated that DLK1 and DLK2, two non-canonical NOTCH1 ligands that inhibit NOTCH1 signaling in a dose-dependent manner, modulate the adipogenesis process of 3T3-L1 preadipocytes.
View Article and Find Full Text PDFNOTCH receptors participate in cancer cell proliferation and survival. Accumulated evidence indicates that, depending on the cellular context, these receptors can function as oncogenes or as tumor-suppressor genes. The epidermal growth factor-like protein delta-like homolog (DLK)1 acts as a NOTCH inhibitor and is involved in the regulation of normal and tumoral growth.
View Article and Find Full Text PDFNOTCH receptors regulate cell proliferation and survival in several types of cancer cells. Depending on the cellular context, NOTCH1 can function as an oncogene or as a tumor suppressor gene. DLK1 is also involved in the regulation of cell growth and cancer, but nothing is known about the role of DLK2 in these processes.
View Article and Find Full Text PDFBackground Information: Delta-like proteins 1 and 2 (DLK1, 2) are NOTCH receptor ligands containing epidermal growth factor-like repeats, which regulate NOTCH signalling. We investigated the role of DLK and the NOTCH pathway in the morphogenesis of the submandibular salivary glands (SMGs), using in vitro organotypic cultures.
Results: DLK1 and 2 were present in all stages of SMG morphogenesis, where DLK1 inhibited both NOTCH activity and SMG branching.
The protein DLK2, highly homologous to DLK1, belongs to the EGF-like family of membrane proteins, which includes NOTCH receptors and their DSL-ligands. The molecular mechanisms by which DLK proteins regulate cell differentiation and proliferation processes are not fully established yet. In previous reports, we demonstrated that DLK1 interacts with itself and with specific EGF-like repeats of the NOTCH1 extracellular region involved in the binding to NOTCH1 canonical ligands.
View Article and Find Full Text PDFdlk1 is an epidermal growth factor (EGF)-like homeotic protein containing an intracellular region, a single transmembrane domain, and an extracellular region possessing six EGF-like repeats and a protease-target sequence. dlk1 functions as a modulator of adipogenesis, and other differentiation processes. The molecular mechanisms by which dlk1 regulates these processes are unclear.
View Article and Find Full Text PDFThe EGF-like homeotic gene Dlk1 appears to function as an inhibitor of adipogenesis. Overexpression of Dlk1 prevents adipogenesis of 3T3-L1 cells. Dlk1-deficient mice are obese; however, adipose tissue still develops in Fc-dlk1 transgenic mice, suggesting that Dlk1 is not a strict inhibitor of adipogenesis.
View Article and Find Full Text PDFThe Dlk1 gene appears to function as a regulator of adipogenesis. Adult Dlk1-deficient mice are obese, but adipose tissue still develops in transgenic mice overexpressing an Fc-dlk1 fusion protein, and neither type of genetically modified mice displays serious abnormalities. It was therefore possible that one yet unidentified gene might either compensate or antagonize for the absence or for overexpression, respectively, of Dlk1 in those animals.
View Article and Find Full Text PDFPigment epithelium-derived factor (PEDF) is an extracellular multifunctional protein belonging to the serpin superfamily with demonstrable neurotrophic, gliastatic, neuronotrophic, antiangiogenic, and antitumorigenic properties. We have previously provided biochemical evidence for high affinity PEDF-binding sites and proteins in plasma membranes of retina, retinoblastoma, and CNS cells. This study was designed to reveal a receptor involved in the biological activities of PEDF.
View Article and Find Full Text PDFThe protein dlk, encoded by the Dlk1 gene, belongs to the Notch epidermal growth factor (EGF)-like family of receptors and ligands, which participate in cell fate decisions during development. The molecular mechanisms by which dlk regulates cell differentiation remain unknown. By using the yeast two-hybrid system, we found that dlk interacts with Notch1 in a specific manner.
View Article and Find Full Text PDF