Adhesive interfaces are suitable modelling tools to describe very thin elastic layers and the related occurring phenomena (such as damage, viscosity, friction, etc.), without using a volumetric description, which is often computationally prohibitive in a large-scale numerical simulation. A major drawback of these kinds of models is the identification of free parameters, because of the smallness of a direct observation scale.
View Article and Find Full Text PDFShort and long-term stabilities of cementless implants are strongly determined by the interfacial load transfer between implants and bone tissue. Stress-shielding effects arise from shear stresses due to the difference of material properties between bone and the implant. It remains difficult to measure the stress field in periprosthetic bone tissue.
View Article and Find Full Text PDFBackground: The surgical success of cementless implants is determined by the evolution of the biomechanical properties of the bone-implant interface (BII). One difficulty to model the biomechanical behavior of the BII comes from the implant surface roughness and from the partial contact between bone tissue and the implant. The determination of the constitutive law of the BII would be of interest in the context of implant finite element (FE) modeling to take into account the imperfect characteristics of the BII.
View Article and Find Full Text PDFBiomechanical phenomena occurring at the bone-implant interface during the press-fit insertion of acetabular cup implants are still poorly understood. This article presents a nonlinear geometrical two-dimensional axisymmetric finite element model aiming at describing the biomechanical behavior of the acetabular cup implant as a function of the bone Young's modulus , the diametric interference fit (), and the friction coefficient . The numerical model was compared with experimental results obtained from an test, which allows to determine a reference configuration with the parameter set: 0.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2017
Although the biomechanical behavior of the acetabular cup (AC) implant is determinant for the surgical success, it remains difficult to be assessed due to the multiscale and anisotropic nature of bone tissue. The aim of the present study was to investigate the influence of the anisotropic properties of peri-implant trabecular bone tissue on the biomechanical behavior of the AC implant at the macroscopic scale. Thirteen bovine trabecular bone samples were imaged using micro-computed tomography (μCT) with a resolution of 18 μm.
View Article and Find Full Text PDF