Publications by authors named "Maria-Jose Garcia-Barrado"

The antidepressant drug opipramol has been reported to exert antilipolytic effect in human adipocytes, suggesting that alongside its neuropharmacological properties, this agent might modulate lipid utilization by peripheral tissues. However, patients treated for depression or anxiety disorders by this tricyclic compound do not exhibit the body weight gain or the glucose tolerance alterations observed with various other antidepressant or antipsychotic agents such as amitriptyline and olanzapine, respectively. To examine whether opipramol reproduces or impairs other actions of insulin, its direct effects on glucose transport, lipogenesis and lipolysis were investigated in adipocytes while its influence on insulin secretion was studied in pancreatic islets.

View Article and Find Full Text PDF

Prolactin (PRL) is a pituitary hormone that has been typically related to lactogenesis in mammals. However, it has been described over 300 roles in the organism of vertebrae and its relationship with the central nervous system (CNS) is yet to be clarified. Mainly secreted by the pituitary gland, the source of prolactin in the CNS remains unclear, where some experiments suggest active transport via an unknown carrier or, on the contrary, PRL being synthesized on the brain.

View Article and Find Full Text PDF

Insulin receptor substrate (Irs) belongs to a family of proteins that mediate the intracellular signaling of insulin and IGF-1. Insulin receptor substrate 2 (Irs2) is necessary for retinal function, since its failure in Irs2-deficient mice in hyperglycemic situation promotes photoreceptor degeneration and visual dysfunction, like in diabetic retinopathy. The expression of P450 aromatase, which catalyzes androgen aromatization to form 17ß-estradiol, increases in some neurodegenerative diseases thus promoting the local synthesis of neuroestrogens that exert relevant neuroprotective functions.

View Article and Find Full Text PDF

Nowadays, obesity is considered as one of the main concerns for public health worldwide, since it encompasses up to 39% of overweight and 13% obese (WHO) adults. It develops because of the imbalance in the energy intake/expenditure ratio, which leads to excess nutrients and results in dysfunction of adipose tissue. The hypertrophy of adipocytes and the nutrients excess trigger the induction of inflammatory signaling through various pathways, among others, an increase in the expression of pro-inflammatory adipocytokines, and stress of the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Treatment with several antipsychotic drugs exhibits a tendency to induce weight gain and diabetic complications. The proposed mechanisms by which the atypical antipsychotic drug olanzapine increases body weight include central dysregulations leading to hyperphagia and direct peripheral impairment of fat cell lipolysis. Several investigations have reproduced in vitro direct actions of antipsychotics on rodent adipocytes, cultured preadipocytes, or human adipose tissue-derived stem cells.

View Article and Find Full Text PDF

The metabolism of triglycerides (TGs) is regulated, among others, by the lipoprotein lipase (LPL) that hydrolyses the TGs on endothelial cells. In turn, LPL is inhibited by the ANGPTLs family of proteins, such as ANGPTL3, 4, and, 8; the latter is the least known. In this work, we have tried to establish the expression and localisation of the Angiopoietin-like 8 (ANGPTL8) protein in the visceral adipose tissue (VAT) of morbid-obese and non-obese patients.

View Article and Find Full Text PDF

: Methylamine, a natural soluble amine present in foods, is known to be a substrate of primary amine oxidase (PrAO) widely expressed in animal tissues. Methylamine has been reported to activate glucose transport in fat cells and to facilitate glucose disposal in rabbits but the interests and limits of such insulin-mimicking actions have not been further explored. This work aimed to perform a preclinical study of the inter-individual variations of these biological properties to study the putative link between PrAO activity and insulin resistance.

View Article and Find Full Text PDF

Involvement of IRS2 in the proliferative effects of IGF-I of follicular thyroid cells has been described, but there are no evidences for in vivo participation of IRS2. This study aimed to analyse the in vivo relevance of IRS2 in the proliferation and apoptosis of thyroid cells by immunocytochemical studies for PCNA, Ki67, and active-caspase-3 in thyroid cells of IRS2 knockout (IRS2-KO) mice, jointly to TUNEL assay. Thyroid hormones were lower in IRS2-KO mice than in their wild-type (WT) counterparts.

View Article and Find Full Text PDF

Insulin receptor substrate 2 (Irs-2) is an intracellular protein susceptible to phosphorylation after activation of the insulin receptor. Its suppression affects testis development and its absence induces peripheral resistance to insulin. The aim of this study was to identify changes induced by the deletion of Irs-2 in the testicular structure and by the altered expression of cytochrome P450 aromatase, a protein necessary for the development and maturation of germ cells.

View Article and Find Full Text PDF

The adrenomedullary chromaffin cells' hormonal pathway has been related to the pathophysiology of diabetes mellitus. In mice, the deletion of insulin receptor substrate type 2 (Irs2) causes peripheral insulin resistance and reduction in β-cell mass, leading to overt diabetes, with gender differences on adrenergic signaling. To further unravel the relevance of Irs2 on glycemic control, we analyzed in adult Irs2 deficient (Irs2) mice, of both sexes but still normoglycemic, dopamine effects on insulin secretion and glycerol release, as well as their adrenal medulla by an immunohistochemical and morphologic approach.

View Article and Find Full Text PDF

Among the more than 300 biological actions described for prolactin, its role in the neurogenic capacity of the hippocampus, which increases synaptogenesis and neuronal plasticity, consolidates memory and acts as a neuronal protector against excitotoxicity-effects mediated through its receptors are more recently known. The detection of prolactin in the hippocampus and its receptors, specifically in the Ammon's horn and dentate gyrus, opened up a new field of study on the possible neuroprotective effect of hormones in a structure involved in learning and memory, as well as in emotional and behavioral processes. It is currently known, although controversial, that prolactin may be related to sex and age and that the hormone could be synthesized in the hippocampus itself.

View Article and Find Full Text PDF

The pituitary gland is part of hypothalamic-pituitary-gonadal axis, which controls development, reproduction, and aging in humans and animals. In addition, the pituitary gland is regulated mainly by hormones and neurotransmitters released from the hypothalamus and by systemic hormones secreted by target glands. Aromatase P450, the enzyme responsible for the catabolization of aromatizable androgens to estrogens, is expressed in different parts of body, including the pituitary gland.

View Article and Find Full Text PDF

Interleukin-1 beta (IL-1β) is a cytokine linking the neuroendocrine system and metabolic homeostasis. We have previously demonstrated the relevance of IL-1β for maintaining the pituitary ACTH-producing cells by immuno-blocking its effects in pituitary cultures. However, the morphological characteristics and the intimate relationship of the pituitary cells expressing IL-1β and ACTH remain unknown.

View Article and Find Full Text PDF

As aromatase P450 is located in several pituitary cells, testosterone can be transformed into 17β-estradiol in the gland by the enzyme. The possible role of this transformation in pituitary function remains to be elucidated, but some evidence suggests a physiological and pathophysiological role for pituitary aromatase. To determine its relevance in the modulation of pituitary function, mainly associated with reproduction, luteinizing hormone (LH)-positive cells in the hypophysis of female and male aromatase knockout (ArKO) mice were studied.

View Article and Find Full Text PDF

In previous studies we demonstrated the expression of aromatase in pituitary cells. This expression is gender related, and is also associated with the presence of prolactinomas. To ascertain the relevance of aromatase in modulating the populations of prolactin-positive pituitary cells an immunocytochemical and morphometric study of prolactin-positive pituitary cells was carried out using the pituitary glands of adult male and female aromatase-knockout (ArKO) mice.

View Article and Find Full Text PDF

The local synthesis of dopamine and its effects on insulin release have been described in isolated islets. Thus, it may be accepted that dopamine exerts an auto-paracrine regulation of insulin secretion from pancreatic beta cells. The aim of the present study is to analyze whether dopamine is a regulator of the proliferation and apoptosis of rat pancreatic beta cells after glucose-stimulated insulin secretion.

View Article and Find Full Text PDF

In previous studies we demonstrated the immunohistochemical expression of aromatase in pituitary cells. In order to determine whether pituitary aromatase is involved in the paracrine regulation of prolactin-producing pituitary cells and the physiological relevance of pituitary aromatase in the control of these cells, an in vivo and in vitro immunocytochemical and morphometric study of prolactin-positive pituitary cells was carried out on the pituitary glands of adult male rats treated with the aromatase antagonist fadrozole. Moreover, we analyzed the expression of mRNA for the enzyme in pituitary cells of male adult rats by in situ hybridization.

View Article and Find Full Text PDF

Differential effects of n-3 and n-6 polyunsaturated fatty acids (PUFAs) have been demonstrated on adipose tissue physiology. Facing to the widely recognized beneficial effects of n-3 PUFAs, the n-6 PUFA effects remain controversial. Thus, we further analyzed the linoleic acid (LA) influence on adipocyte functions.

View Article and Find Full Text PDF

The diabetic phenotype caused by the deletion of insulin receptor substrate-2 (Irs-2) in mice displays a sexual dimorphism. Whereas the majority of male Irs-2(-/-) mice are overtly diabetic by 12 weeks of age, female Irs-2(-/-) animals develop mild obesity and progress less rapidly to diabetes. Here we investigated β-cell function and lipolysis as potential explanations for the gender-related differences in this model.

View Article and Find Full Text PDF

The hallmarks of insulin action are the stimulation and suppression of anabolic and catabolic responses, respectively. These responses are orchestrated by the insulin pathway and are initiated by the binding of insulin to the insulin receptor, which leads to activation of the receptor's intrinsic tyrosine kinase. Severe defects in the insulin pathway, such as in types A and B and advanced type 1 and 2 diabetes lead to severe insulin resistance, resulting in a partial or complete absence of response to exogenous insulin and other known classes of antidiabetes therapies.

View Article and Find Full Text PDF

Numerous imidazolinic agents exhibit antihyperglycaemic properties and have been described to promote insulin secretion, however their effects on adipose tissue development have been poorly investigated. Since white adipose tissue (WAT) plays an important role in glucose homeostasis and expresses imidazoline (I(2)) binding sites abundantly, this work aimed at studying extrapancreatic actions of two I(2)-site ligands, BU 224 and 2-BFI in adipocytes. Interaction with monoamine oxidase (MAO) was investigated by measuring the ability to modulate [(14)C]tyramine oxidation and hydrogen peroxide production.

View Article and Find Full Text PDF

It has been reported that benzylamine reduces blood glucose in rabbits, stimulates hexose uptake, and inhibits lipolysis in mouse, rabbit, and human adipocytes. In the presence of vanadate, benzylamine is also able to improve glucose disposal in normoglycaemic and diabetic rats. Such insulin-mimicking properties are the consequence of hydrogen peroxide production during benzylamine oxidation by semicarbazide-sensitive amine oxidase (SSAO).

View Article and Find Full Text PDF

Benzylamine, a substrate of semicarbazide-sensitive amine oxidase (SSAO), stimulates glucose transport in rat adipocytes and improves glucose disposal in diabetic rats only in the presence of vanadate. These effects have been described to result from a synergism between the hydrogen peroxide formed during amine oxidation and vanadate, via the generation of pervanadate, a powerful insulin mimicker. However, it has also been reported that benzylamine alone can stimulate glucose uptake and inhibit lipolysis in human fat cells.

View Article and Find Full Text PDF

Development of diabetes generally reflects an inadequate mass of insulin-producing beta-cells. beta-cell proliferation and differentiation are regulated by a variety of growth factors and hormones, including insulin-like growth factor I (IGF-I). GRF1 is a Ras-guanine nucleotide exchange factor known previously for its restricted expression in brain and its role in learning and memory.

View Article and Find Full Text PDF

In mouse pancreatic islets incubated under static conditions, the inhibitory effects on glucose-evoked insulin release induced by adrenaline (1 microM), clonidine (2 microM) and UK 14,304 (brimonidine, 0.001-1 microM) were abolished by naloxone (30 nM). Only CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH(2), 0.

View Article and Find Full Text PDF