ACS Appl Mater Interfaces
September 2024
The development and optimization of holographic materials represent a great challenge today. These materials must be synthesized according to the characteristics that are desirable in photonic devices whose application is the object of investigation. In certain holographic sensors and biosensors, it is essential that the recording material be stable in liquid media.
View Article and Find Full Text PDFThis work describes the development of a label-free (LF) biosensing platform for the direct detection of targets based on diffractive structures fabricated with acrylamide-based hydrogels biofunctionalized with proteins and antibodies. Hydrogels containing Bovine Serum Albumin protein (BSA) with different crosslinking degrees were synthesized and characterized to find the optimal conditions for the suitable fabrication of surface relief gratings (SRGs). The bioavailability of BSA-functionalized hydrogels for the specific recognition of anti-BSA antibodies was verified by fluorescence detection.
View Article and Find Full Text PDFColloidal lead halide perovskite nanocrystals are highly luminescent materials with great promise as fluorescent probes in biosensing as long as their intrinsic instability in aqueous media is effectively addressed. In this study, we successfully prepared stable and multicolored CsPbX@SiO (X = Cl/Br, Br and I) core-shell nanoparticles through a simple method based on the water-induced transformation of CsPbX into CsPbX, combined with sol-gel procedures. We observed that the concentration of the CsPbX precursor plays a crucial role in the formation of isolated nanospheres with uniform silica coating and in controlling the number of core-free particles.
View Article and Find Full Text PDFThe role of volume hydrogel holographic gratings as optical transducers in sensor devices for point-of-care applications is increasing due to their ability to be functionalized for achieving enhanced selectivity. The first step in the development of these transducers is the optimization of the holographic recording process. The optimization aims at achieving gratings with reproducible diffraction efficiency, which remains stable after reiterative washings, typically required when working with analytes of a biological nature or several step tests.
View Article and Find Full Text PDFThe present research is focused on the development of a biofunctionalized hydrogel with a surface diffractive micropattern as a label-free biosensing platform. The biosensors described in this paper were fabricated with a holographic recording of polyethylene terephthalate (PET) surface micro-structures, which were then transferred into a hydrogel material. Acrylamide-based hydrogels were obtained with free radical polymerization, and propargyl acrylate was added as a comonomer, which allowed for covalent immobilization of thiolated oligonucleotide probes into the hydrogel network, via thiol-yne photoclick chemistry.
View Article and Find Full Text PDFThe storage of time-stable holographic gratings in hydrogel matrices when the material is immersed in aqueous media is a real challenge at present. The optimization of the storage stages of the holograms must be properly investigated to identify the most suitable development processes. For this reason, this work is focused on the study of the optimization of the washing stages of the hydrogels based on acrylamide and ,'-methylenebis(acrylamide) once unslanted transmission holograms have been stored.
View Article and Find Full Text PDFAnalyte-sensitive DNA-based hydrogels find multiple applications in the field of biosensors due to their adaptable nature. Here, the design of DNA-based hydrogel and its application as sensing platform for the detection of a specific target sequence are presented. DNA-functionalized hydrogel structures were formed via a free radical co-polymerization process.
View Article and Find Full Text PDFDespite the rising advances in the field of metal halide perovskite nanocrystals (NCs), the exploitation of such nanoparticles as luminescent labels for imaging and biosensing is still unclear and in the early stages of investigation. One of the major challenges toward the implementation of metal halide perovskite NCs in biosensing applications is to produce monodispersed nanoparticles with desired surface characteristics and compatible with aqueous environments. Here, we report the synthesis of monodispersed spherical CsPbBr@SiO core-shell nanoparticles by post-synthetic chemical transformation of 3D CsPbBr NCs in the presence of tetraethyl orthosilicate and a critical water/ammonia ratio.
View Article and Find Full Text PDFHydrogel-based holographic sensors consist of a holographic pattern in a responsive hydrogel that diffracts light at different wavelengths depending on the dimensions and refractive index changes in the material. The material composition of hydrogels can be designed to be specifically responsive to different stimuli, and thus the diffraction pattern can correlate with the amount of analyte. According to this general principle, different approaches have been implemented to achieve label-free optical sensors and biosensors, with advantages such as easy fabrication or naked-eye detection.
View Article and Find Full Text PDFResponsive hydrogel-based surface relief gratings have demonstrated great performances as transducers in optical sensing. However, novel and smart designs of hydrogels are needed for the appropriate detection of analytes and biomolecules since the existing materials are very limited to specific molecules. In this work, a biosensing system based on surface relief gratings made of bioresponsive hydrogels has been developed.
View Article and Find Full Text PDFAnal Bioanal Chem
October 2019
In the literature, there are reports of the utilization of various hydrogels to create generic platforms for protein microarray applications. Here, a novel strategy was developed to obtain high-performance microarrays. In it, a dextran hydrogel is used to covalently immobilize oligonucleotides and proteins.
View Article and Find Full Text PDFAn approach is presented for covalent immobilization of biomolecules on an acrylate phosphorylcholine hydrogel. The immobilization and the hydrogel formation take place simultaneously by a thiol-acrylate coupling reaction, induced by UV-light (254 nm). The hydrogel is prepared on two polymeric surfaces (the HardCoat protective layer of Blu-Ray discs, and SU-8) and applied to fluorescence microarray and label-free interferometric detection.
View Article and Find Full Text PDFA photonic bandgap (PBG) biosensor has been developed for the label-free detection of proteins. As the sensing in this type of structures is governed by the interaction between the evanescent field going into the cladding and the target analytes, scanning near-field optical microscopy has been used to characterize the profile of that evanescent field. The study confirms the strong exponential decrease of the signal as it goes into the cladding.
View Article and Find Full Text PDFEarly detection of cancer biomarkers can reduce cancer mortality rate. miRNAs are small non-coding RNAs whose expression changes upon the onset of various types of cancer. Biosensors that specifically detect such biomarkers can be engineered and integrated into point-of-care devices (POC) using label-free detection, high sensibility and compactness.
View Article and Find Full Text PDFIn the field of biosensing, suitable procedures for efficient probes immobilization are of outmost importance. Here we present different light-based strategies to promote the covalent attachment of thiolated capture probes (oligonucleotides and proteins) on different materials and working formats. One strategy employs epoxylated surfaces and uses the light to accomplish the ring opening by a thiol moiety present in a probe.
View Article and Find Full Text PDFSpatially controlled anchoring of NA probes onto microscope glass slides by a novel fluor-thiol coupling reaction is performed. By this UV-initiated reaction, covalent immobilization in very short times (30 s at 254 nm) is achieved with probe densities of up to 39.6 pmol/cm.
View Article and Find Full Text PDFModulation of support wettability used for microarray format biosensing has led to an improvement of results. Hydrophobicity of glass chips was set by derivatizing with single vinyl organosilanes of different chain length and silane mixtures. Thiol-ene photochemical linking has been used as effective chemistry for covalent anchoring of thiolated probes.
View Article and Find Full Text PDFA UV light-induced thiol-ene coupling reaction (TEC) between half-antibodies (hIgG) and vinyl functionalized glass surfaces was run for biosensing in the microarray format. The accomplished performance improved that obtained with whole antibodies.
View Article and Find Full Text PDFA label-free sensor, based on the combination of silicon photonic bandgap (PBG) structures with immobilized molecular beacon (MB) probes, is experimentally developed. Complementary target oligonucleotides are specifically recognized through hybridization with the MB probes on the surface of the sensing structure. This combination of PBG sensing structures and MB probes demonstrates an extremely high sensitivity without the need for complex PCR-based amplification or labelling methods.
View Article and Find Full Text PDFAn experimental study of the influence of the conformational change suffered by molecular beacon (MB) probes-upon the biorecognition of nucleic acid target oligonucleotides over evanescent wave photonic sensors-is reported. To this end, high sensitivity photonic sensors based on silicon photonic bandgap (PBG) structures were used, where the MB probes were immobilized via their 5' termination. Those MBs incorporate a biotin moiety close to their 3' termination in order to selectively bind a streptavidin molecule to them.
View Article and Find Full Text PDFA proper antibody immobilization on a biosensor is a crucial step in order to obtain a high sensitivity to be able to detect low target analyte concentrations. In this paper, we present an experimental study of the immobilization process of antibodies as bioreceptors on a photonic ring resonator sensor. A protein A intermediate layer was created on the sensor surface in order to obtain an oriented immobilization of the antibodies, which enhances the interaction with the target antigens to be detected.
View Article and Find Full Text PDFNucleic acid microarray-based assay technology has shown lacks in reproducibility, reliability, and analytical sensitivity. Here, a new strategy of probe attachment modes for silicon-based materials is built up. Thus, hybridization ability is enhanced by combining thiol-ene or thiol-yne click chemistry reactions with a multipoint attachment of polythiolated probes.
View Article and Find Full Text PDFThere is a huge potential interest to use synthetic polymers as versatile solid supports for analytical microarraying. Chemical modification of polycarbonate (PC) for covalent immobilization of probes, micro-printing of protein or nucleic acid probes, development of indirect immunoassay, and development of hybridization protocols are described and discussed.
View Article and Find Full Text PDFCovalent immobilization of ssDNA fragments onto silicon-based materials was performed using the thiol-yne reaction. Chemical functionalization provided alkyne groups on the surface where the thiol-modified oligonucleotide probes can be easily photoattached as microarrays, reaching an immobilization density around 30 pmol cm. The developed method presents the advantages of spatially controlled probe anchoring (by using a photomask), direct attachment without using cross-linkers, and short irradiation times (20 min).
View Article and Find Full Text PDFA rapid strategy for the covalent immobilization of DNA onto silicon-based materials using the UV-initiated radical thiol-ene reaction is presented in this study. Following this approach, thiol- and alkene-modified oligonucleotide probes were covalently attached in microarray format, reaching immobilization densities around 6 pmol·cm(-2). The developed methodology presents the advantages of spatially controlled probe anchoring (using a photomask), direct attachment without using cross-linkers (one-pot fashion), and short irradiation times (20 min).
View Article and Find Full Text PDF