The use of Fe films as multi-element targets in space radiation experiments with high-intensity ultrashort laser pulses requires a surface structure that can enhance the laser energy absorption on target, as well as a low concentration and uniform distribution of light element contaminants within the films. In this paper, (110) preferred orientation nanocrystalline Fe thin films with controlled morphology and composition were grown on (100)-oriented Si substrates by oblique angle RF magnetron sputtering, at room temperature. The evolution of films key-parameters, crucial for space-like radiation experiments with organic material, such as nanostructure, morphology, topography, and elemental composition with varying RF source power, deposition pressure, and target to substrate distance is thoroughly discussed.
View Article and Find Full Text PDF