Neuroendocrine neoplasms (NENs) encompass tumors arising from neuroendocrine cells in various organs, including the gastrointestinal tract, pancreas, adrenal gland, and paraganglia. Despite advancements, accurately predicting the aggressiveness of gastroenteropancreatic (GEP) NENs based solely on pathological data remains challenging, thereby limiting optimal clinical management. Our previous research unveiled a crucial link between hypermethylation of the protocadherin PCDHGC3 gene and neuroendocrine tumors originating from the paraganglia and adrenal medulla.
View Article and Find Full Text PDFIntroduction: Paragangliomas (PGL), a type of neuroendocrine tumor, pose a significant diagnostic challenge due to their potential for unpredictable locations and asymptomatic presentation. Misdiagnosis of peripancreatic PGLs, particularly as pancreatic neuroendocrine tumors (PANNETs), is a pressing issue as it can negatively impact both pre- and post-treatment decision-making. The aim of our study was to identify microRNA markers for the reliable differential diagnosis of peripancreatic PGLs and PANNETs, addressing a crucial unmet need in the field and advancing the standard of care for these patients.
View Article and Find Full Text PDFOne of the major goals in gene expression data analysis is to explore and discover groups of genes and groups of biological conditions with meaningful relationships. While this problem can be addressed by algorithms, their results require an analysis within context, since they may be affected by many side processes -such as tissue differentiation- that could hinder the target goal. Visual analytics-based methods for exploratory analysis of the gene expression matrix (GEM) are essential in biomedical research since they allow us to frame the analysis within the user's knowledge domain.
View Article and Find Full Text PDFMetastatic pheochromocytoma and paraganglioma (PPGL) have poor prognosis and limited therapeutic options. The recent advent of immunotherapies showing remarkable clinical efficacies against various cancer types offers the possibility of novel opportunities also for metastatic PPGL. Most PPGLs are pathogenically linked to inactivating mutations in genes encoding different succinate dehydrogenase (SDH) subunits.
View Article and Find Full Text PDF5-methoxy tryptophan (5-MTP) is an anti-fibrotic metabolite made by fibroblasts and epithelial cells, present in a micromolar concentrations in human blood, and is associated with the progression of fibrotic kidney disease, but the mechanism is unclear. Here, we show by microscopy and functional assays that 5-MTP influences mitochondria in human peripheral blood monocyte-derived macrophages. As a result, the mitochondrial membranes are more rigid, more branched, and are protected against oxidation.
View Article and Find Full Text PDFHypoxia-inducible factors (HIF) 2α and 1α are the major oxygen-sensing molecules in eukaryotic cells. HIF2α has been pathogenically linked to paraganglioma and pheochromocytoma (PPGL) arising in sympathetic paraganglia or the adrenal medulla (AM), respectively. However, its involvement in the pathogenesis of paraganglioma arising in the carotid body (CB) or other parasympathetic ganglia in the head and neck (HNPGL) remains to be defined.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2021
Bioprinting technology offers layer-by-layer positioning of cells within 3D space with complexity and a defined architecture. Cancer models based in this biofabrication technique are important tools to achieve representative and realistic in vivo conditions of the tumor microenvironment. Here, we show the development of a proof-of-concept three-dimensional bioprinted cancer model that successfully recapitulates the intercellular communication via the assembly of functional tunneling nanotube (TNT)-like cell projections.
View Article and Find Full Text PDFMetastasis remains a clinically unsolved issue in cancer that is initiated by the acquisition of collective migratory properties of cancer cells. Phenotypic and functional heterogeneity that arise among cancer cells within the same tumor increase cellular plasticity and promote metastasis, however, their impact on collective cell migration is incompletely understood. Here, we show that in vitro collective cancer cell migration depends on FAK and MMP-2 and on the presence of cancer-associated fibroblasts (CAFs).
View Article and Find Full Text PDFUnderstanding how heterogeneous cancer cell populations migrate collectively is of paramount importance to arrest metastasis. Here, we applied 3D culture-based approaches for in vitro modeling of the collective migration of squamous carcinoma cells and examine the impact of epithelial and mesenchymal cell interactions on this type of migration. We show that both mesenchymal N-cadherin-expressing cancer cells and cancer-associated fibroblasts cooperate in collective migration of epithelial cancer cells by leading their collective migration.
View Article and Find Full Text PDFThe high resistance against current therapies found in non-small-cell lung cancer (NSCLC) has been associated to cancer stem-like cells (CSCs), a population for which the identification of targets and biomarkers is still under development. In this study, primary cultures from early-stage NSCLC patients were established, using sphere-forming assays for CSC enrichment and adherent conditions for the control counterparts. Patient-derived tumorspheres showed self-renewal and unlimited exponential growth potentials, resistance against chemotherapeutic agents, invasion and differentiation capacities in vitro, and superior tumorigenic potential in vivo.
View Article and Find Full Text PDFContext: SDHB mutations are found in an increasing number of neoplasms, most notably in paragangliomas and pheochromocytomas (PPGLs). SDHB-PPGLs are slow-growing tumors, but ∼50% of them may develop metastasis. The molecular basis of metastasis in these tumors is a long-standing and unresolved problem.
View Article and Find Full Text PDFHistone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system.
View Article and Find Full Text PDFHead Neck
January 2019
Background: Succinate dehydrogenase subunit B (SDHB) immunohistochemistry was considered a valuable tool to identify patients with inherited paraganglioma/pheochromocytoma (PGL/PCC). However, previous studies jointly analyzed 2 related but clinically distinct entities, parasympathetic head and neck paragangliomas (HNPGLs) and sympathetic PCCs/PGLs. Additionally, a role for hypoxia inducible factor-1α (HIF-1α) as a biomarker for succinate dehydrogenase (SDHx)-mutated tumors has not been studied.
View Article and Find Full Text PDFTen-eleven translocation (TET) enzymes are frequently deregulated in cancer, but the underlying molecular mechanisms are still poorly understood. Here we report that shows frequent epigenetic alterations in human glioblastoma including DNA hypermethylation and hypo-hydroxymethylation, as well as loss of histone acetylation. Ectopic overexpression of regulated neural differentiation in glioblastoma cell lines and impaired tumor growth.
View Article and Find Full Text PDFContext: Germline mutations in the succinate dehydrogenase A, B, C, and D genes (collectively, SDHx) predispose to the development of paragangliomas (PGLs) arising at the parasympathetic or sympathetic neuroendocrine systems. SDHx mutations cause absence of tumoral immunostaining for SDHB. However, negative SDHB immunostaining has also been found in a subset of PGLs that lack SDHx mutations.
View Article and Find Full Text PDFTunneling nanotubes (TnTs) are thin channels that temporally connect nearby cells allowing the cell-to-cell trafficking of biomolecules and organelles. The presence or absence of TnTs in human neoplasms and the mechanisms of TnT assembly remains largely unexplored. In this study, we have identified TnTs in tumor cells derived from squamous cell carcinomas (SCC) cultured under bi-dimensional and tri-dimensional conditions and also in human SCC tissues.
View Article and Find Full Text PDFOncotarget
February 2017
Metabolic reprogramming is a very heterogeneous phenomenon in cancer. It mostly consists on increased glycolysis, lactic acid formation and extracellular acidification. These events have been associated to increased activity of the hypoxia inducible factor, HIF-1α.
View Article and Find Full Text PDFThe hypoxia-inducible factor 1α (HIF-1α) and its microRNA target, miR-210, are candidate tumor-drivers of metabolic reprogramming in cancer. Neuroendocrine neoplasms such as paragangliomas (PGLs) are particularly appealing for understanding the cancer metabolic adjustments because of their associations with deregulations of metabolic enzymes, such as succinate dehydrogenase (SDH), and the von Hippel Lindau (VHL) gene involved in HIF-1α stabilization. However, the role of miR-210 in the pathogenesis of SDH-related tumors remains an unmet challenge.
View Article and Find Full Text PDFCorrect apicobasal polarization and intercellular adhesions are essential for the appropriate development of normal epithelia. Here, we investigated the contribution of the cell polarity regulator PARD3 to the development of lung squamous cell carcinomas (LSCC). Tumor-specific PARD3 alterations were found in 8% of LSCCs examined, placing PARD3 among the most common tumor suppressor genes in this malignancy.
View Article and Find Full Text PDFBackground: We previously showed that activation of epidermal growth factor receptor (EGFR) induces hypoxia inducible factor-1α (HIF-1α) in head and neck squamous cell carcinoma (HNSCC) cells. In this study, we have furthered this by investigating the mechanism of HIF-1α activation by epidermal growth factor (EGF) and its association with the sensitivity to gefitinib.
Methods: EGFR/HIF-1α signaling was tested by immunoblot, polymerase chain reaction (PCR), cell proliferation, and apoptosis assays.
J Clin Endocrinol Metab
October 2013
Context: Head and neck paragangliomas (HNPGLs) arise from parasympathetic paraganglias and 35% to 45% are hereditary caused by mutations in succinate dehydrogenase (SDH) genes. The connection between SDH and tumor development is unclear. The most accepted hypothesis proposes a central role for the pseudohypoxic (pHx) pathway activated by hypoxia-inducible factor (HIF).
View Article and Find Full Text PDFBackground: Cytogenetic and gene expression analyses in head and neck squamous cell carcinomas (HNSCC) have allowed identification of genomic aberrations that may contribute to cancer pathophysiology. Nevertheless, the molecular consequences of numerous genetic alterations still remain unclear.
Methods: To identify novel genes implicated in HNSCC pathogenesis, we analyzed the genomic alterations present in five HNSCC-derived cell lines by array CGH, and compared high level focal gene amplifications with gene expression levels to identify genes whose expression is directly impacted by these genetic events.
Background: Head and neck paragangliomas (HNPGLs) are rare tumors associated with the parasympathetic nervous system. Most are sporadic, but about one third result from germline mutations in succinate dehydrogenase (SDH) genes (SDHB, SDHC, SDHD, SDHA, or SDHAF2). Although a molecular connection between SDH dysfunction and tumor development is still unclear, the most accepted hypothesis proposes a central role of the pseudohypoxic pathway.
View Article and Find Full Text PDFPurpose: Pheochromocytomas (PCC) and paragangliomas (PGL) are genetically heterogeneous neural crest-derived neoplasms. Recently we identified germline mutations in a new tumor suppressor susceptibility gene, MAX (MYC-associated factor X), which predisposes carriers to PCC. How MAX mutations contribute to PCC/PGL and associated phenotypes remain unclear.
View Article and Find Full Text PDF