Kidney transplant survival is shortened by chronic rejection and side effects of standard immunosuppressive drugs. Cell-based immunotherapy with tolerogenic dendritic cells has long been recognized as a promising approach to reduce general immunosuppression. Published trials report the safety and the absence of therapy-related adverse reactions in patients treated with tolerogenic dendritic cells suffering from several inflammatory diseases.
View Article and Find Full Text PDFSevere COVID-19 is associated with hyperinflammation and weak T cell responses against SARS-CoV-2. However, the links between those processes remain partially characterized. Moreover, whether and how therapeutically manipulating T cells may benefit patients are unknown.
View Article and Find Full Text PDFCluster of differentiation 38 (CD38) is an ecto-enzyme expressed primarily on immune cells that metabolize nicotinamide adenine dinucleotide (NAD+) to adenosine diphosphate ribose or cyclic ADP-ribose and nicotinamide. Other substrates of CD38 include nicotinamide adenine dinucleotide phosphate and nicotinamide mononucleotide, a critical NAD+ precursor in the salvage pathway. NAD+ is an important coenzyme involved in several metabolic pathways and is a required cofactor for the function of sirtuins (SIRTs) and poly (adenosine diphosphate-ribose) polymerases.
View Article and Find Full Text PDFIntracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4 T cells.
View Article and Find Full Text PDFThe use of recombinant interleukin-2 (IL-2) as a therapeutic protein has been limited by significant toxicities despite its demonstrated ability to induce durable tumor-regression in cancer patients. The adverse events and limited efficacy of IL-2 treatment are due to the preferential binding of IL-2 to cells that express the high-affinity, trimeric receptor, IL-2Rαβγ such as endothelial cells and T-regulatory cells, respectively. Here, we describe a novel bispecific heavy-chain only antibody which binds to and activates signaling through the heterodimeric IL-2Rβγ receptor complex that is expressed on resting T-cells and NK cells.
View Article and Find Full Text PDFBackground: Kidney transplantation is the therapeutic of choice for patients with kidney failure. While immunosuppressive drugs can control graft rejection, their use is associated with increased infections and cancer, and they do not effectively control chronic graft rejection. Cell therapy is an attractive strategy to minimize the use of pharmacological drugs.
View Article and Find Full Text PDFCell therapy is a promising strategy for treating patients suffering from autoimmune or inflammatory diseases or receiving a transplant. Based on our preclinical studies, we have generated human autologous tolerogenic dendritic cells (ATDCs), which are being tested in a first-in-man clinical trial in kidney transplant recipients. Here, we report that ATDCs represent a unique subset of monocyte-derived cells based on phenotypic, transcriptomic, and metabolic analyses.
View Article and Find Full Text PDFAlthough immune checkpoint blockers have yielded significant clinical benefits in patients with different malignancies, the efficacy of these therapies is still limited. Here, we show that disruption of transmembrane protein 176B (TMEM176B) contributes to CD8 T cell-mediated tumor growth inhibition by unleashing inflammasome activation. Lack of Tmem176b enhances the antitumor activity of anti-CTLA-4 antibodies through mechanisms involving caspase-1/IL-1β activation.
View Article and Find Full Text PDFMyeloid cells play a pivotal role in regulating innate and adaptive immune responses. In inflammation, autoimmunity, and after transplantation, myeloid cells have contrasting roles: on the one hand they initiate the immune response, promoting activation and expansion of effector T-cells, and on the other, they counter-regulate inflammation, maintain tissue homeostasis, and promote tolerance. The latter activities are mediated by several myeloid cells including polymorphonuclear neutrophils, macrophages, myeloid-derived suppressor cells, and dendritic cells.
View Article and Find Full Text PDFOver the past century, solid organ transplantation has been improved both at a surgical and postoperative level. However, despite the improvement in efficiency, safety, and survival, we are still far from obtaining full acceptance of all kinds of allograft in the absence of concomitant treatments. Today, transplanted patients are treated with immunosuppressive drugs (IS) to minimize immunological response in order to prevent graft rejection.
View Article and Find Full Text PDFDendritic cells (DCs) represent essential antigen-presenting cells that are critical for linking innate and adaptive immunity, and influencing T-cell responses. Among pattern recognition receptors, DCs express C-type lectin receptors triggered by both exogenous and endogenous ligands, therefore dictating pathogen response, and also shaping T-cell immunity. We previously described in rat, the expression of the orphan C-type lectin-like receptor-1 (CLEC-1) by DCs and demonstrated in vitro its inhibitory role in downstream T helper 17 (Th17) activation.
View Article and Find Full Text PDFAs pediatric liver transplantation comes of age, experts gathered to discuss current paradigms and define gaps in knowledge warranting research to further improve patient and graft outcomes. Identified areas ripe for collaborative research include understanding the molecular and cellular mechanisms of tolerance and the role of donor-specific antibodies, considering ways to expand donor pool, minimizing long-term side effects of immunosuppression, and fine-tuning surgical techniques to minimize biliary and vascular complications.
View Article and Find Full Text PDFAlthough the occurrence of acute rejection was significantly reduced and the allograft survival at 1 year was massively improved by the development of pharmacological immunosuppressive drugs, little progress has been made regarding long-term graft survival. Cell therapy appears to be an innovative and promising strategy to minimize the use of immunosuppression in transplantation and consequently increases long-term graft survival. The strength of cell therapy is that it will induce graft-specific tolerance and not a general immunosuppression of the patients.
View Article and Find Full Text PDFTransplantation
October 2016
Background: Regulatory myeloid cell (RMC) therapy is a promising strategy for the treatment of immunological disorders such as autoimmune disease and allograft transplant rejection. Various RMC subsets can be derived from total bone marrow using different protocols, but their phenotypes often overlap, raising questions about whether they are truly distinct.
Methods: In this study, we directly compared the phenotype and function of 3 types of RMCs, tolerogenic dendritic cells, suppressor macrophages, and myeloid-derived suppressor cells, generated in vitro from the same mouse strain in a single laboratory.
Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent.
View Article and Find Full Text PDFRetinoid-related orphan receptor gamma t (RORγt) is a master transcription factor central to type 17 immunity involving cells such as T helper 17, group 3 innate lymphoid cells or IL-17-producing γδ T cells. Here we show that the intracellular ion channel TMEM176B and its homologue TMEM176A are strongly expressed in these RORγt(+) cells. We demonstrate that TMEM176A and B exhibit a similar cation channel activity and mainly colocalise in close proximity to the trans-Golgi network.
View Article and Find Full Text PDFIn the last years, cell therapy has become a promising approach to therapeutically manipulate immune responses in autoimmunity, cancer, and transplantation. Several types of lymphoid and myeloid cells origin have been generated in vitro and tested in animal models. Their efficacy to decrease pharmacological treatment has successfully been established.
View Article and Find Full Text PDFEmerging knowledge regarding B cells in organ transplantation has demonstrated that these cells can no longer be taken as mere generators of deleterious Abs but can also act as beneficial players. We previously demonstrated in a rat model of cardiac allograft tolerance induced by short-term immunosuppression an accumulation in the blood of B cells overexpressing inhibitory molecules, a phenotype also observed in the blood of patients that spontaneously develop graft tolerance. In this study, we demonstrated the presence in the spleen of regulatory B cells enriched in the CD24(int)CD38(+)CD27(+)IgD(-)IgM(+/low) subpopulation, which are able to transfer donor-specific tolerance via IL-10 and TGF-β1-dependent mechanisms and to suppress in vitro TNF-α secretion.
View Article and Find Full Text PDFIntroduction: Like other tissues in the body, the human dental pulp is equipped with a network of immune cells that can be mobilized against pathogens when they invade the tooth. Very little data, mostly obtained with classic histologic methods, have reported their quantities and relative percentages. The objective of this study was to characterize and precisely quantify immunocompetent cells in healthy human dental pulp by using fluorescence-activated cell sorting, together with identifying specific cell subsets in the leukocyte (CD45(+)) cells.
View Article and Find Full Text PDFCell therapy and the use of mAbs that interfere with T cell effector functions constitute promising approaches for the control of allograft rejection. In the current study, we investigated a novel approach combining administration of autologous tolerogenic dendritic cells with short-term treatment with CD3-specific Abs. Permanent acceptance of pancreatic islet allografts was achieved in mice treated with the combination therapy the day before transplantation but not in recipients treated with either therapy alone.
View Article and Find Full Text PDFPLoS One
December 2015
Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmunity. Recently, MDSC have been successfully generated in vitro from naive mouse bone marrow cells or healthy human PBMCs using minimal cytokine combinations.
View Article and Find Full Text PDFPreventing untoward immune responses against a specific antigen is a major challenge in different clinical settings such as gene therapy, transplantation, or autoimmunity. Following intramuscular delivery of recombinant adeno-associated virus (rAAV)-derived vectors, transgene rejection can be a roadblock to successful clinical translation. Specific immunomodulation strategies potentially leading to sustained transgene expression while minimizing pharmacological immunosuppression are desirable.
View Article and Find Full Text PDFOrgan transplantation appears today to be the best alternative to replace the loss of vital organs induced by various diseases. Transplants can, however, also be rejected by the recipient. In this review, we provide an overview of the mechanisms and the cells/molecules involved in acute and chronic rejections.
View Article and Find Full Text PDF