Publications by authors named "Maria-Antonietta Pellegrino"

Article Synopsis
  • The study explored whether high-intensity interval training (HIIT) creates an epigenetic memory in skeletal muscle similar to what has been observed with resistance training.
  • Twenty healthy participants underwent two HIIT cycles with a three-month break in between to examine changes in muscle gene expression and DNA methylation.
  • Results showed significant improvements in oxygen consumption and identified specific genes with lasting changes in DNA methylation and expression related to muscle function, even after a period of not training.
View Article and Find Full Text PDF

Nemaline myopathies are the most common form of congenital myopathies. Variants in ACTA1 (NEM3) comprise 15-25% of all nemaline myopathy cases. Patients harboring variants in ACTA1 present with a heterogeneous disease course characterized by stable or progressive muscle weakness and, in severe cases, respiratory failure and death.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a genetic disorder characterized by the loss of spinal motor neurons leading to muscle weakness and respiratory failure. Mitochondrial dysfunctions are found in the skeletal muscle of patients with SMA. For obvious ethical reasons, the diaphragm muscle is poorly studied, notwithstanding the very important role that respiratory involvement plays in SMA mortality.

View Article and Find Full Text PDF

Following acute coronavirus disease 2019 (COVID-19), a substantial proportion of patients showed symptoms and sequelae for several months, namely the postacute sequelae of COVID-19 (PASC) syndrome. Major phenomena are exercise intolerance, muscle weakness, and fatigue. We aimed to investigate the physiopathology of exercise intolerance in patients with PASC syndrome by structural and functional analyses of skeletal muscle.

View Article and Find Full Text PDF

A large set of FoxOs-dependent genes play a primary role in controlling muscle mass during hindlimb unloading. Mitochondrial dysfunction can modulate such a process. We hypothesized that endurance exercise before disuse can protect against disuse-induced muscle atrophy by enhancing peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) expression and preventing mitochondrial dysfunction and energy-sensing AMP-activated protein kinase (AMPK) activation.

View Article and Find Full Text PDF

Nemaline myopathy, a disease of the actin-based thin filament, is one of the most frequent congenital myopathies. To date, no specific therapy is available to treat muscle weakness in nemaline myopathy. We tested the ability of tirasemtiv, a fast skeletal troponin activator that targets the thin filament, to augment muscle force-both in vivo and in vitro-in a nemaline myopathy mouse model with a mutation (H40Y) in Acta1.

View Article and Find Full Text PDF

Physical activity is emerging as an alternative nonpharmaceutical strategy to prevent and treat a variety of cardiovascular diseases due to its cardiac and skeletal muscle beneficial effects. Oxidative stress occurs in skeletal muscle of chronic heart failure (CHF) patients with possible impact on muscle function decline. We determined the effect of voluntary-free wheel running (VFWR) in preventing protein damage in Tgαq*44 transgenic mice (Tg) characterized by a delayed CHF progression.

View Article and Find Full Text PDF

Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα*44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age).

View Article and Find Full Text PDF

Key Points: Loss of muscle mass and strength in the growing population of elderly people is a major health concern for modern societies. This condition, termed sarcopenia, is a major cause of falls and of the subsequent increase in morbidity and mortality. Despite numerous studies on the impact of ageing on individual muscle fibres, the contribution of single muscle fibre adaptations to ageing-induced atrophy and functional impairment is still unsettled.

View Article and Find Full Text PDF

Short-term disuse and subsequent recovery affect whole muscle and single myofiber contractile function in young and old. While the loss and recovery of single myofiber specific force (SF) following disuse and rehabilitation has been shown to correlate with alterations in myosin concentrations in young, it is unknown whether similar relationships exist in old. Therefore, the purpose of the present study was to examine the effect of 14days lower limb disuse followed by 28days of active recovery on single muscle fiber myosin content in old (68yrs) and young (24yrs) recreationally physically active healthy men.

View Article and Find Full Text PDF

Key Points: Muscle atrophy is a debilitating condition that affects a high percentage of the population with a negative impact on quality of life. Dissecting the molecular level of the atrophy process, and the similarities/dissimilarities among different catabolic conditions, is a necessary step for designing specific countermeasures to attenuate/prevent muscle loss. The FoxO family transcription factors represent one of the most important regulators of atrophy programme stimulating the expression of many atrophy-related genes.

View Article and Find Full Text PDF

Key Points: It is generally assumed that muscle fibres go through atrophy following disuse with a loss of specific force and an increase in unloaded shortening velocity. However, the underlying mechanisms remain to be clarified. Most studies have focused on events taking place during the development of disuse, whereas the subsequent recovery phase, which is equally important, has received little attention.

View Article and Find Full Text PDF

Introduction: The aim of this study was to understand the effects of short-term glucocorticoid administration in healthy subjects.

Methods: Five healthy men received dexamethasone (8 mg/day) for 7 days. Vastus lateralis muscle biopsy and knee extension torque measurement were performed before and after administration.

View Article and Find Full Text PDF

Key Points: Skeletal muscle atrophy occurs as a result of disuse. Although several studies have established that a decrease in protein synthesis and increase in protein degradation lead to muscle atrophy, little is known about the triggers underlying such processes. A growing body of evidence challenges oxidative stress as a trigger of disuse atrophy; furthermore, it is also becoming evident that mitochondrial dysfunction may play a causative role in determining muscle atrophy.

View Article and Find Full Text PDF

Prolonged skeletal muscle inactivity causes muscle fibre atrophy. Redox imbalance has been considered one of the major triggers of skeletal muscle disuse atrophy, but whether redox imbalance is actually the major cause or simply a consequence of muscle disuse remains of debate. Here we hypothesized that a metabolic stress mediated by PGC-1α down-regulation plays a major role in disuse atrophy.

View Article and Find Full Text PDF

In order to get a comprehensive picture of the complex adaptations of human skeletal muscle to disuse and further the understanding of the underlying mechanisms, we participated in two bed rest campaigns, one lasting 35 days and one 24 days. In the first bed rest (BR) campaign, myofibrillar proteins, metabolic enzymes and antioxidant defence systems were found to be down-regulated both post-8 days and post-35 days BR by proteomic analysis of vastus lateralis muscle samples from nine subjects. Such profound alterations occurred early (post-8 days BR), before disuse atrophy developed, and persisted through BR (post-35 days BR).

View Article and Find Full Text PDF

A pivotal role has been ascribed to oxidative stress in determining the imbalance between protein synthesis and degradation leading to muscle atrophy in many pathological conditions and in disuse. However, a large variability in disuse-induced alteration of redox homeostasis through muscles, models and species emerges from the literature. Whereas the causal role of oxidative stress appears well established in the mechanical ventilation model, findings are less compelling in the hindlimb unloaded mice and very limited in humans.

View Article and Find Full Text PDF

Statins and fibrates can cause myopathy. To further understand the causes of the damage we performed a proteome analysis in fast-twitch skeletal muscle of rats chronically treated with different hypolipidemic drugs. The proteomic maps were obtained from extensor digitorum longus (EDL) muscles of rats treated for 2-months with 10mg/kg atorvastatin, 20 mg/kg fluvastatin, 60 mg/kg fenofibrate and control rats.

View Article and Find Full Text PDF

Oxidative stress was proposed as a trigger of muscle impairment in various muscle diseases. The hindlimb-unloaded (HU) rodent is a model of disuse inducing atrophy and slow-to-fast transition of postural muscles. Here, mice unloaded for 14 days were chronically treated with the selective antioxidant trolox.

View Article and Find Full Text PDF

Two-dimensional proteomic maps of soleus (Sol), a slow oxidative muscle, and gastrocnemius (Gas), a fast glycolytic muscle of control mice (CTRL), of mice hindlimb unloaded for 14 days (HU mice) and of HU mice treated with trolox (HU-TRO), a selective and potent antioxidant, were compared. The proteomic analysis identified a large number of differentially expressed proteins in a pool of approximately 800 proteins in both muscles. The protein pattern of Sol and Gas adapted very differently to hindlimb unloading.

View Article and Find Full Text PDF

Oxidative stress plays an important role in the pathogenesis of diabetic complications. We investigated the effects of a specific oral mixture of amino acid (AA) supplements on the antioxidant defense system, superoxide dismutase (SOD), and heat shock proteins (HSPs: HspB1, similar to Hsp 20 kDa, and HspB7) in the soleus muscle of streptozotocin (STZ)-diabetic mice by bidimensional electrophoresis and mass spectrometry. Four groups of 5 mice were considered: nondiabetic control mice, nondiabetic mice given AA supplements (0.

View Article and Find Full Text PDF

We aimed to assess whether a specific mixture of amino acid (AA) supplements counteracts the metabolic and functional changes in the streptozotocin (STZ)-induced diabetic rat heart model. Adult male Wistar rats were divided into 6 groups (n = 10 each) and treated for 43 days: nondiabetic controls, nondiabetic rats given an AA mixture (0.1 g/kg per day), diabetic rats (induced with 65 mg/kg STZ given intraperitoneally), diabetic rats given AAs, diabetic rats given insulin (5 IU/day given subcutaneously), and diabetic rats given insulin plus AAs.

View Article and Find Full Text PDF

The impact of ageing on force and velocity of human skeletal muscle fibres has been extensively studied. As discrepancies have been reported, it is still unclear whether or not a deterioration of the capacity of muscle fibres to develop force and shortening is involved in determining weakness and decrease in shortening velocity of skeletal muscle of elderly people. We compared myosin heavy chain (MHC) isoform distribution of vastus lateralis muscle, and specific force (Po/CSA) and maximum shortening velocity (Vo) of skeletal muscle fibres among one population of young controls (CTRL) and three populations of elderly (EL) subjects with very variable levels of physical activity: sedentary (EL-SED, n = 3); controls (EL-CTRL, n = 4); endurance trained (EL-END, n = 3).

View Article and Find Full Text PDF

The aim of the present study was to assess age-dependent changes of proteins in the vastus lateralis muscle of physically active elderly and young subjects by a combination of two-dimensional difference gel electrophoresis, SDS-PAGE and ESI-MS/MS. The differences observed in the elderly group included down-regulation of regulatory myosin light chains, particularly the phosphorylated isoforms, a higher proportion of myosin heavy chain isoforms 1 and 2A, and enhanced oxidative and reduced glycolytic capacity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session26vstrh7jfbfto0u7vfjq279tl8km2qg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once