Diffuse correlation spectroscopy (DCS) is an optical method that offers non-invasive assessment of blood flow in tissue through the analysis of intensity fluctuations in diffusely backscattered coherent light. The non-invasive nature of the technique has enabled several clinical applications for deep tissue blood flow measurements, including cerebral blood flow monitoring as well as tumor blood flow mapping. While a promising technique, in measurement configurations targeting deep tissue hemodynamics, the standard DCS implementations suffer from insufficient signal-to-noise ratio (SNR), depth sensitivity, and sampling rate, limiting their utility.
View Article and Find Full Text PDFSpeckle contrast optical spectroscopy (SCOS) is an emerging camera-based technique that can measure human cerebral blood flow (CBF) with high signal-to-noise ratio (SNR). At low photon flux levels typically encountered in human CBF measurements, camera noise and nonidealities could significantly impact SCOS measurement SNR and accuracy. Thus, a guide for characterizing, selecting, and optimizing a camera for SCOS measurements is crucial for the development of next-generation optical devices for monitoring human CBF and brain function.
View Article and Find Full Text PDFCarotid endarterectomy (CEA) involves removal of plaque in the carotid artery to reduce the risk of stroke and improve cerebral perfusion. This study aimed to investigate the utility of assessing pulsatile blood volume and flow during CEA. Using a combined near-infrared spectroscopy/diffuse correlation spectroscopy instrument, pulsatile hemodynamics were assessed in 12 patients undergoing CEA.
View Article and Find Full Text PDFInfants born at an extremely low gestational age (ELGA, < 29 weeks) are at an increased risk of intraventricular hemorrhage (IVH), and there is a need for standalone, safe, easy-to-use tools for monitoring cerebral hemodynamics. We have built a multi-wavelength multi-distance diffuse correlation spectroscopy device (MW-MD-DCS), which utilizes time-multiplexed, long-coherence lasers at 785, 808, and 853 nm, to simultaneously quantify the index of cerebral blood flow (CBF) and the hemoglobin oxygen saturation (SO). We show characterization data on liquid phantoms and demonstrate the system performance on the forearm of healthy adults, as well as clinical data obtained on two preterm infants.
View Article and Find Full Text PDFSignificance: The non-invasive measurement of cerebral blood flow based on diffuse optical techniques has seen increased interest as a research tool for cerebral perfusion monitoring in critical care and functional brain imaging. Diffuse correlation spectroscopy (DCS) and speckle contrast optical spectroscopy (SCOS) are two such techniques that measure complementary aspects of the fluctuating intensity signal, with DCS quantifying the temporal fluctuations of the signal and SCOS quantifying the spatial blurring of a speckle pattern. With the increasing interest in the use of these techniques, a thorough comparison would inform new adopters of the benefits of each technique.
View Article and Find Full Text PDFSignificance: Combining near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) allows for quantifying cerebral blood volume, flow, and oxygenation changes continuously and non-invasively. As recently shown, the DCS pulsatile cerebral blood flow index () can be used to quantify critical closing pressure (CrCP) and cerebrovascular resistance ().
Aim: Although current DCS technology allows for reliable monitoring of the slow hemodynamic changes, resolving pulsatile blood flow at large source-detector separations, which is needed to ensure cerebral sensitivity, is challenging because of its low signal-to-noise ratio (SNR).
Diffuse correlation spectroscopy (DCS) is an optical technique that can be used to characterize blood flow in tissue. The measurement of cerebral hemodynamics has arisen as a promising use case for DCS, though traditional implementations of DCS exhibit suboptimal signal-to-noise ratio (SNR) and cerebral sensitivity to make robust measurements of cerebral blood flow in adults. In this work, we present long wavelength, interferometric DCS (LW-iDCS), which combines the use of a longer illumination wavelength (1064 nm), multi-speckle, and interferometric detection, to improve both cerebral sensitivity and SNR.
View Article and Find Full Text PDFThis report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
View Article and Find Full Text PDFObjective: This pilot study aims to show the feasibility of noninvasive and real-time cerebral hemodynamic monitoring during carotid endarterectomy (CEA) via diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS). Methods: Cerebral blood flow index (CBFi) was measured unilaterally in seven patients and bilaterally in seventeen patients via DCS. In fourteen patients, hemoglobin oxygenation changes were measured bilaterally and simultaneously via NIRS.
View Article and Find Full Text PDFObjective: To assess the association between cerebral saturation (crSO) using Near-Infrared Spectroscopy (NIRS) and brain injury in extremely preterm infants.
Study Design: This retrospective study includes 62 infants (<28 weeks gestation) who underwent continuous NIRS monitoring in the first 5 days after birth. Median crSO were compared in 12 h increments between infants with and without germinal matrix/intraventricular hemorrhage (GM/IVH).
Currently, there is great interest in making neuroimaging widely accessible and thus expanding the sampling population for better understanding and preventing diseases. The use of wearable health devices has skyrocketed in recent years, allowing continuous assessment of physiological parameters in patients and research cohorts. While most health wearables monitor the heart, lungs and skeletal muscles, devices targeting the brain are currently lacking.
View Article and Find Full Text PDFCapacitive proximity sensing is widespread in our everyday life, but no sensor for biomedical optics takes advantage of this technology to monitor the probe attachment to the subject's skin. In particular, when using optical monitoring devices, the capability to quantitatively measure the probe contact can significantly improve data quality and ensure the subject's safety. We present a custom novel optical probe based on a flexible printed circuit board which integrates a capacitive contact sensor, 3D-printed optic fiber holders and an accelerometer sensor.
View Article and Find Full Text PDFObjective: Diffuse correlation spectroscopy (DCS) is an optical technique that allows for the non-invasive measurement of blood flow. Recent work has shown that utilizing longer wavelengths beyond the traditional NIR range provides a significant improvement to signal-to-noise ratio (SNR). However, current detectors both sensitive to longer wavelengths and suitable for clinical applications (InGaAs/InP SPADs) suffer from suboptimal afterpulsing and dark noise characteristics.
View Article and Find Full Text PDFThe ability of diffuse correlation spectroscopy (DCS) to measure cerebral blood flow (CBF) in humans is hindered by the low signal-to-noise ratio (SNR) of the method. This limits the high acquisition rates needed to resolve dynamic flow changes and to optimally filter out large pulsatile oscillations and prevents the use of large source-detector separations ( ), which are needed to achieve adequate brain sensitivity in most adult subjects. To substantially improve SNR, we have built a DCS device that operates at 1064 nm and uses superconducting nanowire single-photon detectors (SNSPD).
View Article and Find Full Text PDFTime domain diffuse correlation spectroscopy (TD-DCS) can offer increased sensitivity to cerebral hemodynamics and reduced contamination from extracerebral layers by differentiating photons based on their travel time in tissue. We have developed rigorous simulation and evaluation procedures to determine the optimal time gate parameters for monitoring cerebral perfusion considering instrumentation characteristics and realistic measurement noise. We simulate TD-DCS cerebral perfusion monitoring performance for different instrument response functions (IRFs) in the presence of realistic experimental noise and evaluate metrics of sensitivity to brain blood flow, signal-to-noise ratio (SNR), and ability to reject the influence of extracerebral blood flow across a variety of time gates to determine optimal operating parameters.
View Article and Find Full Text PDFObjectives: Real-time noninvasive monitoring of cerebral blood flow (CBF) during surgery is key to reducing mortality rates associated with adult cardiac surgeries requiring hypothermic circulatory arrest (HCA). We explored a method to monitor cerebral blood flow during different brain protection techniques using diffuse correlation spectroscopy (DCS), a noninvasive optical technique which, combined with frequency-domain near-infrared spectroscopy (FDNIRS), also provides a measure of oxygen metabolism.
Methods: We used DCS in combination with FDNIRS to simultaneously measure hemoglobin oxygen saturation (SO), an index of cerebral blood flow (CBF), and an index of cerebral metabolic rate of oxygen (CMRO) in 12 patients undergoing cardiac surgery with HCA.
Background: Transcranial photobiomodulation (tPBM) has recently emerged as a potential cognitive enhancement technique and clinical treatment for various neuropsychiatric and neurodegenerative disorders by delivering invisible near-infrared light to the scalp and increasing energy metabolism in the brain.
Objective: We assessed whether transcranial photobiomodulation with near-infrared light modulates cerebral electrical activity through electroencephalogram (EEG) and cerebral blood flow (CBF).
Methods: We conducted a single-blind, sham-controlled pilot study to test the effect of continuous (c-tPBM), pulse (p-tPBM), and sham (s-tPBM) transcranial photobiomodulation on EEG oscillations and CBF using diffuse correlation spectroscopy (DCS) in a sample of ten healthy subjects [6F/4 M; mean age 28.
Significance: Intracranial pressure (ICP), variability in perfusion, and resulting ischemia are leading causes of secondary brain injury in patients treated in the neurointensive care unit. Continuous, accurate monitoring of cerebral blood flow (CBF) and ICP guide intervention and ultimately reduce morbidity and mortality. Currently, only invasive tools are used to monitor patients at high risk for intracranial hypertension.
View Article and Find Full Text PDFContamination of diffuse correlation spectroscopy (DCS) measurements of cerebral blood flow (CBF) due to systemic physiology remains a significant challenge in the clinical translation of DCS for neuromonitoring. Tunable, multi-layer Monte Carlo-based (MC) light transport models have the potential to remove extracerebral flow cross-talk in cerebral blood flow index ( ) estimates. We explore the effectiveness of MC DCS models in recovering accurate changes in the presence of strong systemic physiology variations during a hypercapnia maneuver.
View Article and Find Full Text PDF