Publications by authors named "Maria van Gennip"

Opportunistic pathogenic bacteria can engage in biofilm-based infections that evade immune responses and develop into chronic conditions. Because conventional antimicrobials cannot efficiently eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. It has recently been established that the secondary messenger cyclic diguanosine monophosphate (c-di-GMP) functions as a positive regulator of biofilm formation in several different bacteria.

View Article and Find Full Text PDF

Objectives: Biofilm-forming Staphylococcus epidermidis is a prevalent cause of peritonitis during peritoneal dialysis. We compared the efficacy of a synthetic antimicrobial peptidomimetic (Ltx21) versus vancomycin in a murine model mimicking a device-related peritonitis.

Methods: Silicone implants, pre-colonized with an S.

View Article and Find Full Text PDF

Chronic infections with Pseudomonas aeruginosa persist because the bacterium forms biofilms that are tolerant to antibiotic treatment and the host immune response. Scanning electron microscopy and confocal laser scanning microscopy were used to visualize biofilm development in vivo following intraperitoneal inoculation of mice with bacteria growing on hollow silicone tubes, as well as to examine the interaction between these bacteria and the host innate immune response. Wild-type P.

View Article and Find Full Text PDF

In relation to emerging multiresistant bacteria, development of antimicrobials and new treatment strategies of infections should be expected to become a high-priority research area. Quorum sensing (QS), a communication system used by pathogenic bacteria like Pseudomonas aeruginosa to synchronize the expression of specific genes involved in pathogenicity, is a possible drug target. Previous in vitro and in vivo studies revealed a significant inhibition of P.

View Article and Find Full Text PDF

Objectives: Quorum sensing (QS)-deficient Pseudomonas aeruginosa biofilms formed in vitro are more susceptible to tobramycin than QS-proficient P. aeruginosa biofilms, and combination treatment with a QS inhibitor (QSI) and tobramycin shows synergistic effects on the killing of in vitro biofilms. We extended these results to an in vivo P.

View Article and Find Full Text PDF

Foods with health-promoting effects beyond nutritional values have been gaining increasing research focus in recent years, although not much has been published on this subject in relation to bacterial infections. With respect to treatment, a novel antimicrobial strategy, which is expected to transcend problems with selective pressures for antibiotic resistance, is to interrupt bacterial communication, also known as quorum sensing (QS), by means of signal antagonists, the so-called QS inhibitors (QSIs). Furthermore, QSI agents offer a potential solution to the deficiencies associated with use of traditional antibiotics to treat infections caused by bacterial biofilms and multidrug-resistant bacteria.

View Article and Find Full Text PDF

For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections.

View Article and Find Full Text PDF

The formation of biofilms in conjunction with quorum sensing (QS)-regulated expression of virulence by opportunistic pathogens contributes significantly to immune evasion and tolerance to a variety of antimicrobial treatments. The present protocol describes methods to determine the in vitro efficacy of potential quorum sensing inhibitors (QSIs). Work on Pseudomonas aeruginosa has shown that chemical blockage of QS is a promising new antimicrobial strategy.

View Article and Find Full Text PDF

In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged intratracheally with alginate beads containing both a P. aeruginosa strain together with the E.

View Article and Find Full Text PDF

This article will introduce the reader to protocols intended for (i) identification of quorum sensing (QS) inhibitors (QSIs), (ii) characterization of these compounds in vitro and (iii) evaluation of these compounds in animal models. Traditional antimicrobial drugs are designed against planktonic bacteria and not against bacterial biofilms. In biofilms, bacteria are highly resistant to otherwise lethal treatments and they communicate with each other, thus enabling coordinated group behavior.

View Article and Find Full Text PDF

Background: Effects of treatment with tobramycin initiated 1 or 24 h post-infection were investigated in a new version of a pulmonary infection model in mice. The model reflects the differentiated behaviour of Pseudomonas aeruginosa mucoid strains isolated from the lungs of one chronically infected cystic fibrosis (CF) patient at different time periods during chronic lung infection.

Methods: BALB/c mice were challenged with alginate-embedded mucoid clinical isolates isolated in 1988, 1997 or 2003.

View Article and Find Full Text PDF

Polymorphonuclear neutrophilic leukocytes (PMNs) play a central role in innate immunity, where they dominate the response to infections, in particular in the cystic fibrosis lung. PMNs are phagocytic cells that produce a wide range of antimicrobial agents aimed at killing invading bacteria. However, the opportunistic pathogen Pseudomonas aeruginosa can evade destruction by PMNs and thus cause persistent infections.

View Article and Find Full Text PDF

Many of the virulence factors produced by the opportunistic human pathogen Pseudomonas aeruginosa are quorum-sensing (QS) regulated. Among these are rhamnolipids, which have been shown to cause lysis of several cellular components of the human immune system, e.g.

View Article and Find Full Text PDF

The dominant cause of premature death in patients suffering from cystic fibrosis (CF) is chronic lung infection with Pseudomonas aeruginosa. The chronic lung infection often lasts for decades with just one clone. However, as a result of inflammation, antibiotic treatment and different niches in the lungs, the clone undergoes significant genetic changes, resulting in diversifying geno- and phenotypes.

View Article and Find Full Text PDF