Publications by authors named "Maria van Agthoven"

Acinetobacter baumannii, classified as priority number one by the World Health Organization (WHO), is an opportunistic pathogen responsible for infection and is able to develop antibiotic resistance easily. Membranes are bacteria's first line of defense against external aggression, such as antibiotics. A chemical modification of a lipid family or a change in lipid composition can lead to resistance to antibiotics.

View Article and Find Full Text PDF

Two-dimensional mass spectrometry (2D MS) is a multiplexed tandem mass spectrometry method that does not rely on ion isolation to correlate the precursor and fragment ions. On a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), 2D MS instead uses the modulation of precursor ion radii inside the ICR cell before fragmentation and yields 2D mass spectra that show the fragmentation patterns of all the analytes. In this study, we perform 2D MS for the first time with quadrupolar detection in a dynamically harmonized ICR cell.

View Article and Find Full Text PDF

Two-dimensional mass spectrometry (2D MS) is a method for tandem mass spectrometry in which precursor and fragment ions are correlated by manipulating ion radii rather than by ion isolation. A 2D mass spectrum contains the fragmentation patterns of all analytes in a sample, acquired in parallel. We report ultrahigh-resolution narrowband 2D mass spectra of a mixture of two histone peptides with the same sequence, one of which carries an acetylation and the other a trimethylation (/ 0.

View Article and Find Full Text PDF

Due to the natural dispersity that is present in synthetic polymers, an added complexity is always present in the analysis of polymeric species. Tandem mass spectrometry analysis requires the isolation of individual precursors before a fragmentation event to allow the unambiguous characterization of these species and is not viable at certain levels of complexity due to achievable isolation widths. Two-dimensional mass spectrometry (2DMS) fragments ions and correlates fragments with their corresponding precursors without the need for isolation.

View Article and Find Full Text PDF

Two-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry method that relies on manipulating ion motions to correlate precursor and fragment ion signals. 2D mass spectra are obtained by performing a Fourier transform in both the precursor ion mass-to-charge ratio () dimension and the fragment ion dimension. The phase of the ion signals evolves linearly in the precursor dimension and quadratically in the fragment dimension.

View Article and Find Full Text PDF

Two-dimensional mass spectrometry (2D MS) on a Fourier transform ion cyclotron resonance (FT-ICR) mass analyzer allows for tandem mass spectrometry without requiring ion isolation. In the ICR cell, the precursor ion radii are modulated before fragmentation, which results in modulation of the abundance of their fragments. The resulting 2D mass spectrum enables a correlation between the precursor and fragment ions.

View Article and Find Full Text PDF

Two-dimensional mass spectrometry (2D MS) is a data-independent tandem mass spectrometry technique in which precursor and fragment ion species can be correlated without the need for prior ion isolation. The behavior of phase in 2D Fourier transform mass spectrometry is investigated with respect to the calculation of phase-corrected absorption-mode 2D mass spectra. 2D MS datasets have a phase that is defined differently in each dimension.

View Article and Find Full Text PDF

Fourier transform ion cyclotron resonance mass analysers (FT-ICR MS) can offer the highest resolutions and mass accuracies in mass spectrometry. Mass spectra acquired in an FT-ICR MS can yield accurate elemental compositions of all compounds in a complex sample. Fragmentation caused by ion-neutral, ion-electron, or ion-photon interactions leads to more detailed structural information on compounds.

View Article and Find Full Text PDF

Two-dimensional mass spectrometry (2D MS) correlates precursor and fragment ions without ion isolation in a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) for tandem mass spectrometry. Infrared activated electron capture dissociation (IR-ECD), using a hollow cathode configuration, generally yields more information for peptide sequencing in tandem mass spectrometry than ECD (electron capture dissociation) alone. The effects of the fragmentation zone on the 2D mass spectrum are investigated as well as the structural information that can be derived from it.

View Article and Find Full Text PDF

Two-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry technique that allows data-independent fragmentation of all precursors in a mixture without previous isolation, through modulation of the ion cyclotron frequency in the ICR-cell prior to fragmentation. Its power as an analytical technique has been proven particularly for proteomics. Recently, a comparison study between 1D and 2D MS has been performed using infrared multiphoton dissociation (IRMPD) on calmodulin (CaM), highlighting the capabilities of the technique in both top-down (TDP) and bottom-up proteomics (BUP).

View Article and Find Full Text PDF

Transition metal-containing proteins and enzymes are critical for the maintenance of cellular function and metal-based (metallo)drugs are commonly used for the treatment of many diseases, such as cancer. Detection and characterisation of metallodrug targets is crucial for improving drug-design and therapeutic efficacy. Due to the unique isotopic ratios of many metal species, and the complexity of proteomic samples, standard MS data analysis of these species is unsuitable for accurate assignment.

View Article and Find Full Text PDF

Rationale: Two-dimensional mass spectrometry (2D MS) is a technique that correlates precursor and product ions in a sample without requiring prior ion isolation. Until now, this technique has only been implemented on Fourier transform ion cyclotron resonance mass spectrometers. By coupling 2D MS techniques in linear ion traps (LITs) with a mass analyser with a fast duty cycle (e.

View Article and Find Full Text PDF

Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows data-independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors through the modulation of precursor ion cyclotron radii prior to fragmentation. Previous results show that implementation of 2D FT-ICR MS with infrared multi-photon dissociation (IRMPD) and electron capture dissociation (ECD) has turned this method into a useful analytical tool. In this work, IRMPD tandem mass spectrometry of calmodulin (CaM) has been performed both in one-dimensional and two-dimensional FT-ICR MS using a top-down and bottom-up approach.

View Article and Find Full Text PDF

Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows the correlation between precursor and fragment ions in tandem mass spectrometry without the need to isolate the precursor ion beforehand. 2D FT-ICR MS has been optimized as a data-independent method for the structural analysis of compounds in complex samples. Data processing methods and denoising algorithms have been developed to use it as an analytical tool.

View Article and Find Full Text PDF

Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated.

View Article and Find Full Text PDF

Modern scientific research produces datasets of increasing size and complexity that require dedicated numerical methods to be processed. In many cases, the analysis of spectroscopic data involves the denoising of raw data before any further processing. Current efficient denoising algorithms require the singular value decomposition of a matrix with a size that scales up as the square of the data length, preventing their use on very large datasets.

View Article and Find Full Text PDF

Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al.

View Article and Find Full Text PDF

2D FT-ICR MS allows the correlation between precursor and fragment ions by modulating ion cyclotron radii for fragmentation modes with radius-dependent efficiency in the ICR cell without the need for prior ion isolation. This technique has been successfully applied to ion-molecule reactions, Collision-induced dissociation and infrared multiphoton dissociation. In this study, we used electron capture dissociation for 2D FT-ICR MS for the first time, and we recorded two-dimensional mass spectra of peptides and a mixture of glycopeptides that showed fragments that are characteristic of ECD for each of the precursor ions in the sample.

View Article and Find Full Text PDF

In two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FTICR-MS), scintillation noise, caused mostly by fluctuations in the number of ions in the ICR cell, is the leading cause for errors in spectrum interpretation. In this study, we adapted an algorithm based on singular value decomposition and first introduced by Cadzow et al. (IEE Proceedings Pt.

View Article and Find Full Text PDF