Publications by authors named "Maria del Carmen Martinez-Ballesta"

The use of bio-nanotechnology in agriculture-such as the biological applications of metal oxide nanoparticles (NPs)-greatly improves crop yield and quality under different abiotic stress factors including soil metal contamination. Here, we explore the effectiveness of zinc oxide (ZnO)-NPs (0, 50 mg/L) foliar spraying to ameliorate the detrimental effects of cadmium (Cd) on the water transport and nitrogen metabolism in tomato (Solanum lycopersicum Mill. cv.

View Article and Find Full Text PDF

Red LED light (R LED) is an efficient tool to improve seed germination and plant growth under controlled environments since it is more readily absorbed by photoreceptors' phytochromes compared to other wavelengths of the spectrum. In this work, the effect of R LED on the radicle emergence and growth (Phase III of germination) of pepper seeds was evaluated. Thus, the impact of R LED on water transport through different intrinsic membrane proteins, via aquaporin (AQP) isoforms, was determined.

View Article and Find Full Text PDF

Background: Soil fertility is a major concern during vegetable production. Conventional versus organic fertilization has been studied in order to conserve soil properties. While some reports point out an increase in food nutritional properties, the loss of crop yield under organic conditions continues to be a problem.

View Article and Find Full Text PDF

High levels of soil salinity can cause substantial decline in growth and productivity of crops worldwide, thus representing a major threat to global agriculture. In recent years, engineered nanoparticles (NPs) have been deemed as a promising alternative in combating abiotic stress factors, such as salinity. In this context, the present study was designed to explore the potential of cerium oxide nanoparticles (CeONPs) in alleviating salt stress in grapevine (Vitis vinifera L.

View Article and Find Full Text PDF

Halophyte plants are adapted to saline environments and represent a novel type of crops given their possible uses at both culinary and industrial levels. In this work, the nutritional quality of different Mediterranean halophyte species, , , and , was evaluated under conditions of high salinity. For this, plants were grown at different NaCl concentrations (0, 100, 200, and 300 mM) and the contents of proteins, total lipids, polyphenols, and mineral elements were analyzed as well as growth.

View Article and Find Full Text PDF
Article Synopsis
  • Soil salinity significantly impacts plant growth, prompting this study to explore how different plant species respond physiologically to varying saline conditions (0, 100, 200, and 300 mM NaCl).
  • The research involved analyzing physiological traits like leaf succulence, nutrient levels, and water relations across four plant species (Atriplex halimus, Salicornia fruticosa, Cakile maritima, and Brassica rapa) using Discriminant Canonical Analysis.
  • Findings revealed that plant responses were influenced by leaf succulence rather than water relations, illustrating that ion accumulation patterns and protein ratios could effectively categorize plant responses to salt stress.
View Article and Find Full Text PDF

The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure.

View Article and Find Full Text PDF

Background: Brassica spp. sprouts are rich in nutrients and bioactive compounds, especially glucosinolates and phenolic acid derivatives, and the composition of these young germinating seeds can be altered by several external factors. In this study two cabbage varieties (Brassica oleracea var.

View Article and Find Full Text PDF

In recent years, a number of studies have been focused on the structural evaluation of protein complexes in order to get mechanistic insights into how proteins communicate at the molecular level within the cell. Specific sites of protein-aquaporin interaction have been evaluated and new forms of regulation of aquaporins described, based on these associations. Heterotetramerizations of aquaporin isoforms are considered as novel regulatory mechanisms for plasma membrane (PIPs) and tonoplast (TIPs) proteins, influencing their intrinsic permeability and trafficking dynamics in the adaptive response to changing environmental conditions.

View Article and Find Full Text PDF

Elevated [CO2] and salinity in the soils are considered part of the effects of future environmental conditions in arid and semi-arid areas. While it is known that soil salinization decreases plant growth, an increased atmospheric [CO2] may ameliorate the negative effects of salt stress. However, there is a lack of information about the form in which inorganic nitrogen source may influence plant performance under both conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Biological vesicles like proteoliposomes have the potential to deliver bioactives due to their biodegradable nature and targeted cell interaction.
  • The study focused on how these vesicles, enriched with aquaporins from broccoli, interact with glucosinolates, revealing that indolic glucosinolates degrade faster in water compared to aliphatic ones.
  • Results indicated that glucoraphanin was stabilized by these proteoliposomes through specific hydrogen bonds and hydrophobic interactions with aquaporin residues, suggesting that broccoli-derived vesicles can effectively carry and stabilize glucosinolates due to aquaporins.
View Article and Find Full Text PDF

Background: The complex interactions between CO2 increase and salinity were investigated in relation to decreased N supply, in order to determine the nutritional quality of broccoli (Brassica oleracea L. var. italica) plants under these conditions.

View Article and Find Full Text PDF

Climatic change predicts elevated salinity in soils as well as increased carbon dioxide dioxide [CO2] in the atmosphere. The present study aims to determine the effect of combined salinity and elevated [CO2] on sulfur (S) metabolism and S-derived phytochemicals in green and purple broccoli (cv. Naxos and cv.

View Article and Find Full Text PDF

Recent advances concerning genetic manipulation provide new perspectives regarding the improvement of the physiological responses in herbaceous and woody plants to abiotic stresses. The beneficial or negative effects of these manipulations on plant physiology are discussed, underlining the role of aquaporin isoforms as representative markers of water uptake and whole plant water status. Increasing water use efficiency and the promotion of plant water retention seem to be critical goals in the improvement of plant tolerance to abiotic stress.

View Article and Find Full Text PDF

The role of jasmonic acid in the induction of stomatal closure is well known. However, its role in regulating root hydraulic conductivity (L) has not yet been explored. The objectives of the present research were to evaluate how JA regulates L and how calcium and abscisic acid (ABA) could be involved in such regulation.

View Article and Find Full Text PDF

Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. The concentrations of these chemopreventive compounds (glucosinolate-degradation products, the bioactive isothiocyanates) may be modified under salinity. In this work, the effect of the aliphatic glucosinolate sinigrin (2-propenyl-glucosinolate) on plant water balance, involving aquaporins, was explored under salt stress.

View Article and Find Full Text PDF

Glucosinolates, a class of secondary metabolites, mainly found in Brassicaceae, are affected by the changing environment. This review is focusing on the physiological significance of glucosinolates and their hydrolysis products in the plant response to different abiotic stresses. Special attention is paid to the crosstalk between some of the physiological processes involved in stress response and glucosinolate metabolism, with the resulting connection between both pathways in which signaling mechanisms glucosinolate may act as signals themselves.

View Article and Find Full Text PDF

The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed the phytochemical composition of three purple sprouting broccoli varieties (EEP, EP, and LP) grown in Southeast Spain, focusing on their antioxidant properties and nutritional value.
  • The EP variety was found to grow better in terms of photosynthesis and carbon absorption, while LP did not produce inflorescences; all purple varieties had higher levels of health-promoting compounds than green broccoli.
  • The findings suggest that EEP and EP varieties grown in a Mediterranean climate have the potential to improve nutritional quality by having more vitamin C, phenolics, and glucosinolates compared to traditionally grown varieties.
View Article and Find Full Text PDF

Plant aquaporins belong to a large superfamily of conserved proteins called the major intrinsic proteins (MIPs). There is limited information about the diversity of MIPs and their water transport capacity in broccoli (Brassica oleracea) plants. In this study, the cDNAs of isoforms of Plasma Membrane Intrinsic Proteins (PIPs), a class of aquaporins, from broccoli roots have been partially sequenced.

View Article and Find Full Text PDF

Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed.

View Article and Find Full Text PDF

Salinity stress is known to modify the plasma membrane lipid and protein composition of plant cells. In this work, we determined the effects of salt stress on the lipid composition of broccoli root plasma membrane vesicles and investigated how these changes could affect water transport via aquaporins. Brassica oleracea L.

View Article and Find Full Text PDF

To evaluate the variations in the nutritional components of a broccoli cultivar under saline stress, two different NaCl concentrations (40 and 80 mM) were assayed. Glucosinolates, phenolic compounds, and ascorbic and dehydroascorbic acids (vitamin C) were analyzed by HPLC, and mineral composition was determined by ICP spectrophotometry. Qualitative differences were observed for several bioactive compounds depending on the plant organ and the intensity of the salt stress.

View Article and Find Full Text PDF

Under saline conditions, an optimal cell water balance, possibly mediated by aquaporins, is important to maintain the whole-plant water status. Furthermore, excessive accumulation of boric acid in the soil solution can be observed in saline soils. In this work, the interaction between salinity and excess boron with respect to the root hydraulic conductance (L(0)), abundance of aquaporins (ZmPIP1 and ZmPIP2), ATPase activity and root sap nutrient content, in the highly boron- and salt-tolerant Zea mays L.

View Article and Find Full Text PDF